

EISA System
Architecture

Second Edition

MINDSHARE, INC.
TOM SHANLEY

DON ANDERSON

�
��

Addison-Wesley Publishing Company
Reading, Massachusetts • Menlo Park, California • New York

Don Mills, Ontario • Wokingham, England • Amsterdam
Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan

Paris • Seoul • Milan • Mexico City • Taipei

 MindShare, Inc (r)
SINGLE-USER LICENSE AGREEMENT

Please read this document carefully before proceeding. This Agreement licenses this electronic
book to you and contains warranty and liability disclaimers. By viewing this book, you are con-
firming your acceptance of the book and agreeing to become bound by the terms of this Agree-
ment. If you do not wish to do so, immediately return the book to MindShare, Inc.

1. DEFINITIONS

(a) "book or electronic book" means the electronic book covered by this Agreement, and any
related updates supplied by MindShare, Inc. The book consists of the encrypted PDF file supplied
in electronic form.

2. LICENSE
This Agreement allows the SINGLE END-USER to:

(a) View the book on a computer or a stand-alone ebook viewer.
(b) You may make and distribute copies of the book and electronically transfer the book from one
computer to another or over a network.
(c) Certain rights are not granted under this Agreement, but may be available under a separate
agreement. If you would like to enter into a Site or Network License, please contact MindShare.

3. RESTRICTIONS
(a) You may not copy screen images of the book, or any portion thereof.
(b) You may not decompile, reverse engineer, disassemble, or otherwise reduce the book to a
human-perceivable form.
(c) You may not modify, rent, resell for profit, distribute or create derivative works based upon the
book or any part thereof.
(d) You will not export or reexport, directly or indirectly, the book into any country prohibited by
the United States Export Administration Act and the regulations thereunder.
(e) The book may not be used in a group viewing environment.

4. OWNERSHIP

The foregoing license gives you limited rights to use the book. You do not become the owner of,
and MindShare retains title to, the intellectual property contained within the book, and all copies
thereof. All rights not specifically granted in this Agreement, including Federal and International
Copyrights, are reserved by MindShare.

5. DISCLAIMER OF WARRANTIES AND OF TECHNICAL SUPPORT:
The book is provided to you on an "AS IS" basis, without any technical support or warranty of
any kind from MindShare including, without limitation, a warranty of merchantability, fitness for
a particular purpose and non-infringement. SOME STATES DO NOT ALLOW THE EXCLU-
SION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO
YOU. YOU MAY ALSO HAVE OTHER LEGAL RIGHTS WHICH VARY FROM STATE TO

STATE. These limitations or exclusions of warranties and liability do not affect or prejudice the
statutory rights of a consumer; i.e., a person acquiring goods otherwise than in the course of a
business.

6. LIMITATION OF DAMAGES:
MINDSHARE SHALL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES OR LOSS (INCLUDING DAMAGES FOR LOSS OF BUSI-
NESS, LOSS OF PROFITS, OR THE LIKE), WHETHER BASED ON BREACH OF CON-
TRACT, TORT (INCLUDING NEGLIGENCE), PRODUCT LIABILITY OR OTHERWISE,
EVEN IF MINDSHARE OR ITS REPRESENTATIVES HAVE BEEN ADVISED OF THE POS-
SIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE LIMITATION OR
EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO
THIS LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU. The limited warranty,
exclusive remedies and limited liability set forth above are fundamental elements of the basis of
the bargain between Mindshare and you. You agree that Mindshare would not be able to provide
the book on an economic basis without such limitations.

7. GOVERNMENT END USERS (USA only):
RESTRICTED RIGHTS LEGEND The book is "Restricted Computer Software." Use, duplica-
tion, or disclosure by the U.S. Government is subject to restrictions as set forth in this Agreement
and as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013
(OCT 1988), FAR 12.212(a)(1995), FAR 52.227-19, or FAR 52.227-14, as applicable." Manufac-
turer: Mindshare, Inc., 4285 Slash Pine Drive, Colorado Springs, CO 80908.

8. GENERAL:
This Agreement shall be governed by the internal laws of the State of Colorado. This Agreement
contains the complete agreement between the parties with respect to the subject matter hereof, and
supersedes all prior or contemporaneous agreements or understandings, whether oral or written.
All questions concerning this Agreement shall be directed to: Mindshare, Inc., 4285 Slash Pine
Drive, Colorado Springs, CO 80908, Attention: Chief Financial Officer.

Mindshare is registered trademark of Mindshare, Inc.

Single-User License Agreement 9/8/00.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and Addison-Wesley was aware of a trademark claim, the
designations have been printed in initial capital letters or all capital letters.

The authors and publishers have taken care in preparation of this book, but
make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the
information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

Copyright © 1995 by MindShare, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Sponsoring Editor: Keith Wollman
Project Manager: Eleanor McCarthy
Production Coordinator: Lora L. Ryan
Cover design: Barbara T. Atkinson
Set in 10 point Palatino by MindShare, Inc.

1 2 3 4 5 6 7 8 9 -MA- 9998979695
First printing, February 1995

Addison-Wesley books are available for bulk purchases by corporations,
institutions, and other organizations. For more information please contact the
Corporate, Government, and Special Sales Department at (800) 238-9682.

This book is dedicated to my son, Ryan, a ray of sunshine who possesses an
incredible amount of that rarest of elements, common sense.

Contents

v

Contents
Acknowledgments... i

About This Book
The MindShare Architecture Series... 1
Organization of This Book... 2

Part One – The EISA Specification .. 2
EISA Overview ... 2
EISA Bus Structure Overview... 2
EISA Bus Arbitration.. 2
Interrupt Handling... 2
Detailed Description of EISA Bus... 3
ISA Bus Cycles .. 3
EISA CPU and Bus Master Bus Cycles .. 3
EISA DMA... 3
EISA System Configuration .. 3

Part Two – The Intel 82350DT EISA Chipset ... 3
EISA System Buses ... 3
Bridge, Translator, Pathfinder, Toolbox .. 3
Intel 82350DT EISA Chip Set .. 4

Who This Book Is For.. 4
Prerequisite Knowledge... 4
Documentation Conventions... 4

Hex Notation .. 5
Binary Notation.. 5
Decimal Notation... 5
Signal Name Representation.. 5
Bit Field Identification (logical bit or signal groups) .. 5

We Want Your Feedback .. 6
Bulletin Board... 6
Mailing Address .. 6

Part One – EISA Specification

Chapter 1: EISA Overview
Introduction .. 9
Compatibility With ISA ... 10
Memory Capacity... 10

EISA System Architecture

vi

Synchronous Data Transfer Protocol ... 10
Enhanced DMA Functions... 10
Bus Master Capabilities ... 11
Data Bus Steering .. 12
Bus Arbitration... 12
Edge and Level-Sensitive Interrupt Requests.. 12
Automatic System Configuration... 12
EISA Feature/Benefit Summary.. 13

Chapter 2: EISA Bus Structure Overview
Community of Processors... 15

Limitations of ISA Bus Master Support.. 16
EISA Bus Master Support ... 17

EISA System Bus Master Types.. 20
Types of Slaves in EISA System ... 21

Chapter 3: EISA Bus Arbitration
EISA Bus Arbitration Scheme ... 23
Preemption.. 28
Example Arbitration Between Two Bus Masters... 29
Memory Refresh .. 30

Chapter 4: Interrupt Handling
ISA Interrupt Handling Review ... 33
ISA Interrupt Handling Shortcomings.. 34

Phantom Interrupts ... 34
Limited Number of IRQ Lines ... 35

EISA Interrupt Handling.. 35
Shareable IRQ Lines .. 35
Phantom Interrupt Elimination ... 40

Chapter 5: Detailed Description of EISA Bus
Introduction .. 41
Address Bus Extension ... 43
Data Bus Extension.. 45
Bus Arbitration Signal Group ... 45
Burst Handshake Signal Group.. 48
Bus Cycle Definition Signal Group ... 48
Bus Cycle Timing Signal Group... 49
Lock Signal ... 49
Slave Size Signal Group... 50
AEN Signal ... 50

Contents

vii

EISA Connector Pinouts... 50

Chapter 6: ISA Bus Cycles
Introduction .. 53
8-bit ISA Slave Device .. 53
16-bit ISA Slave Device .. 54
Transfers With 8-bit Devices ... 54
Transfers With 16-bit Devices ... 57

Standard 16-bit Memory ISA bus Cycle ... 58
Standard 16-bit I/O ISA bus Cycle ... 61
Zero Wait State ISA bus Cycle Accessing 16-bit Device... 64

ISA DMA Bus Cycles.. 67
ISA DMA Introduction ... 67
8237 DMAC Bus Cycle.. 68

Chapter 7: EISA CPU and Bus Master Bus Cycles
Intro to EISA CPU and Bus Master Bus Cycles.. 71
Standard EISA Bus Cycle ... 72

General .. 72
Analysis of EISA Standard Bus Cycle... 73
Performance Using EISA Standard Bus Cycle... 75

Compressed Bus Cycle.. 75
General .. 75
Performance Using Compressed Bus Cycle... 76

Burst Bus Cycle .. 77
General .. 77
Analysis of EISA Burst Transfer .. 77
Performance Using Burst Transfers .. 82
DRAM Memory Burst Transfers ... 82
Downshift Burst Bus Master .. 82

Chapter 8: EISA DMA
DMA Bus Cycle Types.. 83

Introduction.. 83
Compatible DMA Bus Cycle .. 84

Description .. 84
Performance and Compatibility ... 84

Type A DMA Bus Cycle.. 85
Description .. 85
Performance and Compatibility ... 85

Type B DMA Bus Cycle .. 86
Description .. 86

EISA System Architecture

viii

Performance and Compatibility ... 87
Type C DMA Bus Cycle.. 87

Description .. 87
Performance and Compatibility ... 87

EISA DMA Transfer Rate Summary ... 88
Other DMA Enhancements.. 88

Addressing Capability .. 88
Preemption ... 89
Buffer Chaining.. 89
Ring Buffers .. 90
Transfer Size... 90

Chapter 9: EISA System Configuration
ISA I/O Address Space Problem... 91
EISA Slot-Specific I/O Address Space... 94
EISA Product Identifier .. 98
EISA Configuration Registers ... 100
Configuration Bits Defined by EISA Spec ... 101
EISA Configuration Process .. 101

General .. 101
Configuration File Naming .. 102
Configuration Procedure .. 103
Configuration File Macro Language ... 104
Example Configuration File ... 104
Example File Explanation... 110

Part Two – Intel 82350DT EISA Chipset

Chapter 10: EISA System Buses
Introduction .. 117
Host Bus... 118
EISA/ISA Bus ... 119
X-Bus .. 119

Chapter 11: Bridge, Translator, Pathfinder, Toolbox
Bus Cycle Initiation... 123
Bridge... 124
Translator .. 128

Address Translation .. 128
Command Line Translation ... 128

Pathfinder.. 129
Toolbox .. 132

Contents

ix

Chapter 12: Intel 82350DT EISA Chipset
Introduction .. 133
EISA Bus Controller (EBC) and EISA Bus Buffers (EBBs)... 134

General .. 134
CPU Selection... 135
Data Buffer Control and EISA Bus Buffer (EBB) ... 137

General... 137
Transfer Between 32-bit EISA Bus Master and 8-bit ISA Slave............................ 139
Transfer Between 32-bit EISA Bus Master and 16-bit ISA Slave.......................... 145
Transfer Between 32-bit EISA Bus Master and 16-bit EISA Slave 150
Transfer Between 32-bit EISA Bus Master and 32-bit EISA Slave 153
Transfer Between 32-bit EISA Bus Master and 32-bit Host Slave........................ 155
Transfer Between 16-bit EISA Bus Master and 8-bit ISA Slave............................ 156
Transfer Between 16-bit EISA Bus Master and 16-bit ISA Slave.......................... 158
Transfer Between 16-bit EISA Bus Master and 16-bit EISA Slave 160
Transfer Between 16-bit EISA Bus Master and 32-bit EISA Slave 160
Transfer Between 16-bit ISA Bus Master and 8-bit ISA Slave 162
Transfer Between 16-bit ISA Bus Master and 16-bit ISA Slave 162
Transfer Between 16-bit ISA Bus Master and 16-bit EISA Slave.......................... 163
Transfer Between 16-bit ISA Bus Master and 32-bit EISA Slave.......................... 164
Transfer Between 32-bit Host CPU and 32-bit Host Slave.................................... 165
Transfer Between 32-bit Host CPU and 8-bit ISA Slave.. 165
Transfer Between 32-bit Host CPU and 16-bit ISA Slave...................................... 166
Transfer Between 32-bit Host CPU and 16-bit EISA Slave 167
Transfer Between 32-bit Host CPU and 32-bit EISA Slave 167

Address Buffer Control and EBB... 168
Host CPU Bus Master .. 170
EISA Bus Master ... 170
ISA Bus Master ... 170
Refresh Bus Master... 171
DMA Bus Master .. 171

Host Bus Interface Unit... 172
ISA Bus Interface Unit... 176
EISA Bus Interface Unit .. 179
Cache Support.. 180
Reset Control .. 181
Slot-Specific I/O Support ... 181
Clock Generator Unit .. 181
I/O Recovery.. 182
Testing... 182
ISP interface unit.. 183

82357 Integrated System Peripheral (ISP)... 183

EISA System Architecture

x

Introduction.. 183
NMI Logic... 185
Interrupt Controllers ... 185
DMA Controllers ... 186
System Timers .. 187
Central Arbitration Control.. 188
Refresh Logic.. 188
Miscellaneous Interface Signals ... 188

Glossary... 193
Index... 201

Figures

xi

Figure 2-1. The EISA Bus — a Shared Resource ...19
Figure 3-1. Block Diagram of the Central Arbitration Control (CAC)...............................24
Figure 3-2. CAC with DMACs Programmed for Fixed Priority...26
Figure 3-3. CAC with DMACs Programmed for Rotational Priority27
Figure 3-4. Arbitration between Two Bus Masters...29
Figure 4-1. IRQ Line Sharing...39
Figure 5-1. The EISA Connector ...42
Figure 5-2. The EISA Connector Address Lines ...44
Figure 5-3. The Bus Master Handshake Lines ..47
Figure 5-4. The EISA Connector Pin Assignments ...52
Figure 6-1. Standard Access to an 8-bit ISA Device ...57
Figure 6-2. Standard Access to a 16-bit ISA Memory Device ...60
Figure 6-3. Standard Access to 16-bit I/O Device ..63
Figure 6-4. Zero Wait State Access to a 16-bit ISA Memory Device66
Figure 7-1. The EISA Standard Bus Cycle ...73
Figure 7-2. The EISA Burst Transfer...81
Figure 9-1. ISA Expansion I/O Ranges..92
Figure 9-2. The System Board's AEN Decoder ...98
Figure 10-1. Buses Typically Found in EISA Systems..118
Figure 10-2. The X-Bus ...121
Figure 11-1. The Bridge..126
Figure 12-1. The Intel EISA Chipset ...134
Figure 12-2. The Intel 82358DT EBC...136
Figure 12-3. The Data EISA Bus Buffer, or EBB..139
Figure 12-4. Linkage Between the EBC and the Data EBB ..145
Figure 12-5. Block Diagram of Address EBB...172
Figure 12-6. The ISP Block Diagram...184

EISA System Architecture

xii

Tables

xiii

Table 1-1. EISA Feature/Benefit Summary...14
Table 4-1. Master Interrupt Controller's ELCR Bit Assignment ...36
Table 4-2. Slave Interrupt Controller's ELCR Bit Assignment ..37
Table 5-1. EISA Bus Master Handshake Lines..46
Table 5-2. The Burst Handshake Lines...48
Table 5-3. EISA Bus Cycle Definition Lines...48
Table 5-4. EISA Bus Cycle Timing Signals...49
Table 5-5. The EISA Type/Size Lines...50
Table 6-1. DMA Clock Speeds...68
Table 6-2. ISA DMA State Table ...69
Table 6-3. ISA DMA Transfer Rates ...70
Table 8-1. The DMA ISA-Compatible Bus Cycle..84
Table 8-2. ISA-Compatible Transfer Rates ..85
Table 8-3. The DMA Type A Bus Cycle ...85
Table 8-4. Type A Transfer Rates..86
Table 8-5. The DMA Type B Bus Cycle..86
Table 8-6. Type B Transfer Rates ..87
Table 8-7. Type C Transfer Rates ..88
Table 8-8. EISA DMA Transfer Rates...88
Table 9-1. IBM PC and XT I/O Address Space Usage...91
Table 9-2. Example I/O Address ..93
Table 9-3. Usable and Unusable I/O Address Ranges Above 03FFh94
Table 9-4. EISA I/O Address Assignment ..95
Table 9-5. AEN Decoder Action Table ...97
Table 9-6. Expansion Board Product ID Format ...99
Table 9-7. EISA System Board Product ID Format...100
Table 9-8. EISA Add-in Card Configuration Bits ...101
Table 9-9. Category List ...114
Table 11-1. Situations Requiring Address Bridging...125
Table 11-2. Situations Requiring Data Bridging ...127
Table 11-3. Address Translation Table...128
Table 11-4. Command Lines..129
Table 11-5. Situations Requiring Data Bus Steering...130
Table 12-1. CPU Type/Frequency ..135
Table 12-2. EBC Output Signals Used to Control the Data EBB.......................................137
Table 12-3. EBC's Bus Master Type Determination Criteria ...146
Table 12-4. EBC Output Signals Used to Control the Address EBB.................................169
Table 12-5. Address EBB Control Line States..169
Table 12-6. Host Interface Unit Signal Descriptions...173
Table 12-7. ISA Interface Unit Signal Descriptions ...177
Table 12-8. EISA Interface Unit Signal Descriptions..179
Table 12-9. The EBC's Reset Control Interface Signals...181

EISA System Architecture

xiv

Table 12-10. EBC's Clock Generation Unit Signal Description ...182
Table 12-11. Type of DMA Bus Cycle In Progress..187
Table 12-12. Miscellaneous ISP Signals..189

 xv

Acknowledgments

This book would not have been possible without the input of thousands of
hardware and software people at companies such as Intel, Compaq, IBM and
Dell over the past seven years. They constantly sanity-check me and make me
tell the truth.

Special Thanks

Special thanks to Don Anderson for his constant help, advice and friendship

 xvi

About This Book

1

The MindShare Architecture Series

The MindShare Architecture book series includes: ISA System Architecture, EISA
System Architecture, 80486 System Architecture, PCI System Architecture, Pentium
System Architecture, PCMCIA System Architecture, PowerPC System Architecture,
Plug-and-Play System Architecture, and AMD K5 System Architecture.

Rather than duplicating common information in each book, the series uses the
building-block approach. ISA System Architecture is the core book upon which
the others build. The figure below illustrates the relationship of the books to
each other.

Series Organization

EISA System Architecture

2

Organization of This Book

EISA System Architecture is divided into two major parts:

• Part One — The EISA Specification
• Part Two — The Intel 82350DT EISA Chip Set

Part One provides a detailed explanation of the ISA enhancements as set forth
in the EISA specification, while Part Two provides a detailed description of the
features implemented by the Intel 82350DT chip set. The following paragraphs
provide a summary of each section.

Part One – The EISA Specification

EISA Overview

This chapter provides an overview of the benefits provided by the EISA exten-
sion to ISA.

EISA Bus Structure Overview

This chapter introduces the EISA bus structure and its relationship to the sys-
tem board and expansion cards. The concepts of master and slave are intro-
duced and defined. The types of bus masters and slaves are identified.

EISA Bus Arbitration

The bus arbitration scheme used by the EISA Central Arbitration Control is de-
scribed in detail.

Interrupt Handling

An in-depth discussion of interrupt request handling in the ISA environment
can be found in the chapter entitled “Interrupt Handling” in the MindShare
book entitled ISA System Architecture. This chapter provides a brief review of
the ISA interrupt request handling method and a detailed description of the
EISA method.

About This Book

3

Detailed Description of EISA Bus

This chapter provides a description of all the signals on the EISA bus.

ISA Bus Cycles

This chapter provides a review of the ISA bus master and DMA bus cycles.

EISA CPU and Bus Master Bus Cycles

This chapter provides a detailed description of the EISA CPU and bus master
bus cycle types.

EISA DMA

This chapter describes the EISA DMA capability. This includes a description of
the EISA DMA bus cycle types and the other improved capabilities of the EISA
DMA controller.

EISA System Configuration

In this chapter, EISA automatic system configuration is discussed. This in-
cludes a description of the slot-specific I/O address space, the EISA product
identifier, and the EISA card control ports. The EISA configuration process and
board description files are also covered.

Part Two – The Intel 82350DT EISA Chipset

EISA System Buses

This chapter describes the major buses found in virtually all EISA systems. This
includes the host, EISA, ISA and X buses.

Bridge, Translator, Pathfinder, Toolbox

This chapter provides a description of the major functions performed by the
typical EISA chip set. It acts as the bridge between the host and EISA buses. It
translates addresses and other bus cycle information into the form understood
by all of the host, EISA and ISA devices in a system. When necessary, it per-
forms data bus steering to ensure data travels over the correct paths between

EISA System Architecture

4

the current bus master and the currently addressed device. It incorporates a
toolbox including all of the standard support logic necessary in any EISA ma-
chine. It should be noted that the ISA bus is a subset of the EISA bus.

Intel 82350DT EISA Chip Set

This chapter provides an introduction to the Intel 82350DT EISA chip set. The
focus is on the 82358DT EISA Bus Controller (EBC) the 82357 Integrated Sys-
tems Peripheral (ISP) and the 82352 EISA Bus Buffers (EBBs).

Who This Book Is For

This book is intended for use by hardware and software design and support
personnel. Due to the clear, concise explanatory methods used to describe each
subject, personnel outside of the design field may also find the text useful.

Those interested only in the compatibility and performance-related issues can
skip over the detailed discussions and home in on the issues that interest them.
Those interested in a more detailed explanation of the logic behind the en-
hancements can read the detailed explanations of bus cycle types and the EISA
chip set.

Prerequisite Knowledge

EISA stands for the Extension to the Industry Standard Architecture. In order
to fully grasp the EISA extensions, it is necessary to first understand the ISA
system architecture. The detailed description of EISA presented in this book
builds upon the concepts introduced in MindShare's book entitled ISA System
Architecture to provide a clear, concise explanation of the EISA environment.

Documentation Conventions

This section defines the typographical conventions used throughout this book.

About This Book

5

Hex Notation

All hex numbers are followed by an “h.” Examples:

 9A4Eh
 0100h

Binary Notation

All binary numbers are followed by a “b.” Examples:

 0001 0101b
 01b

Decimal Notation

When required for clarity, decimal numbers are followed by a “d.” Examples:

 256d
 128d

Signal Name Representation

Each signal that assumes the logic low state when asserted is followed by a
pound sign (#). As an example, the REFRESH# signal is asserted low when the
refresh logic runs a refresh bus cycle.

Signals that are not followed by a pound sign are asserted when they assume
the logic high state. As an example, DREQ3 is asserted high to indicate that the
device using DMA Channel three is ready for data to be transfered.

Bit Field Identification (logical bit or
signal groups)

All bit fields are designated as follows:

 [X:Y],

EISA System Architecture

6

where X is the most-significant bit and Y is the least-significant bit of the field.
As an example, the ISA data bus consists of SD[15:0], where SD0 is the least-
significant and SD15 the most-significant bit of the field.

We Want Your Feedback

MindShare values your comments and suggestions. You can contact us via
mail, phone, fax or internet email.

Phone (800) 633-1440
Fax (719) 487-1434
Email tom@mindshare.com

Web Site

Because we are constantly on the road teaching, we can be difficult to get hold
of. To help alleviate problems associated with our migratory habits, we have a
web site to supply the following services:

• Download course abstracts.
• Download tables of contents of each book in the series.
• Facility to inquire about public architecture seminars.
• Message area to log technical questions.
• Message area to log suggestions for book improvements.
• Facility to view book errata and clarifications.

Web Site: www.mindshare.com

Mailing Address

 MindShare, Inc.
 4285 Slash Pine Dr.
 Colorado Springs, CO 80908

mailto:tom@mindshare.com
http://www.mindshare.com/

PART ONE

THE EISA
SPECIFICATION

Chapter 1: EISA Overview

9

Chapter 1
This Chapter

This chapter provides an overview of the benefits provided by the extension to
ISA, EISA.

The Next Chapter

The next chapter, “EISA Bus Structure Overview,” provides an overview of the
“equal-opportunity” environment existent within all EISA-based systems. The
different types of bus masters and slaves are identified.

Introduction

EISA is a superset of the ISA 8 and 16-bit architecture, extending the capabili-
ties of ISA while still maintaining compatibility with ISA expansion boards.

EISA introduces the following improvements over ISA:

• Supports intelligent bus master expansion cards.
• Improved bus arbitration and transfer rates.
• Facilitates 8, 16 or 32-bit data transfers by the main CPU, DMA and bus

master devices.
• An efficient synchronous data transfer mechanism, permitting single trans-

fers as well as high-speed burst transfers.
• Allows 32-bit memory addressing for the main CPU, Direct Memory Ac-

cess (DMA) devices and bus master cards.
• Shareable and/or ISA-compatible handling of interrupt requests.
• Automatic steering of data during bus cycles between EISA and ISA mas-

ters and slaves.
• 33MB/second data transfer rate for bus masters and DMA devices.
• Automatic configuration of the system board and EISA expansion cards.

EISA System Architecture

10

Compatibility With ISA

EISA systems maintain full backward compatibility with the ISA standard.
EISA connectors are a superset of the 16-bit connectors on ISA system boards,
permitting 8 and 16-bit ISA expansion cards to be installed in EISA slots. While
maintaining full compatibility with ISA expansion boards and software, EISA
also offers enhancements in performance and functionality for EISA boards as
well as some ISA boards.

Memory Capacity

EISA systems support a 32-bit address bus. The main CPU, bus master expan-
sion cards and DMA devices may access the entire 4GB memory space. ISA
memory expansion cards can be used without modification to populate the
lower sixteen megabytes. EISA memory expansion cards can add as much
memory as needed for the application, up to the theoretical maximum of 4GB.

Synchronous Data Transfer Protocol

The EISA bus uses a synchronous transfer protocol. Bus master cards, DMA
and the main processor synchronize their bus cycles to the bus clock. The syn-
chronous transfer protocol also provides the cycle control necessary to execute
burst cycles with a transfer rate of up to 33 MB/second.

EISA provides a number of bus cycle types covering a range of transfer speeds
for different applications. The standard bus cycle requires two bus clock cycles,
while the main CPU, DMA and bus masters are permitted to generate burst cy-
cles requiring one clock cycle per transfer.

Enhanced DMA Functions

EISA systems provide a number of DMA enhancements, including the ability
to generate 32-bit addresses, 8, 16, and 32-bit data transfers and more efficient
arbitration and data transfer types. In addition to newer, more efficient transfer
types, EISA DMA also provides ISA-compatible modes with ISA timing and
function as the default.

Chapter 1: EISA Overview

11

DMA offers a low-cost alternative to intelligent bus master cards. The EISA
DMA functions are intended for I/O devices that do not require local intelli-
gence on the I/O expansion card.

EISA 32-bit address support enables ISA and EISA DMA devices to transfer
data to or from any 32-bit memory address. The default ISA DMA mode sup-
ports ISA-compatible 24-bit address generation with no software or hardware
modifications. DMA software can be modified to support the 32-bit memory
space, without modifications to the DMA hardware.

Any DMA channel may be programmed to perform 8, 16 or 32-bit data trans-
fers. An 8-bit DMA device uses the lower data bus path, SD[7:0], while a 16-bit
device uses the lower two paths, SD[7:0] and SD[15:8]. 32-bit DMA devices use
all four data paths.

Using burst bus cycles, a 32-bit DMA device can transfer data at speeds up to
33 MB/second.

EISA DMA channels may be programmed to use one of four DMA bus cycle
types when transferring data between the I/O device and memory. The default
DMA bus cycle type, ISA-compatible, delivers a higher data transfer rate than
ISA-compatible computers. The improvement is the result of EISA's faster bus
arbitration and requires no hardware or software modifications to ISA-
compatible DMA devices. Type A and B cycles are EISA modes that permit
some ISA-compatible DMA devices to achieve higher performance. The burst
DMA (Type C) bus cycle type is the highest-performance DMA bus cycle and is
only available to DMA devices designed specifically for EISA burst.

Bus Master Capabilities

EISA-based systems support intelligent EISA bus master cards, providing data
rates up to 33 megabytes/second using EISA burst bus cycles. A bus master
card typically includes an on-board processor and local memory. It can relieve
the burden on the main processor by performing sophisticated memory access
functions, such as scatter/gather block data transfers. Examples of applications
that might benefit from a bus master implementation include communications
gateways, disk controllers, LAN interfaces, data acquisition systems and cer-
tain classes of graphics controllers.

EISA System Architecture

12

Data Bus Steering

The EISA bus system permits EISA and ISA expansion cards to communicate
with each other. Special system board logic ensures that data travels over the
appropriate data paths and translates the control signals when necessary.

The system board data bus steering logic provides the automatic steering and
control signal translation for ISA to ISA, EISA to EISA, ISA to EISA and EISA to
ISA transfers.

Bus Arbitration

The EISA system board logic also provides a centralized arbitration scheme, al-
lowing efficient bus sharing among the main CPU, multiple EISA bus master
cards and DMA channels. The centralized arbitration supports preemption of
an active bus master or DMA device and can reset a device that does not re-
lease the bus after preemption.

The EISA arbitration method grants the bus to DMA devices, DRAM refresh,
bus masters and the main CPU on a fair, rotational basis. The rotational scheme
provides a short latency for DMA devices to assure compatibility with ISA
DMA devices. Bus masters and the CPU, which typically have buffering avail-
able, have longer, but predictable latencies.

Edge and Level-Sensitive Interrupt Requests

In order to provide backward-compatibility with ISA systems, EISA systems
support positive edge-triggered interrupts. Unlike ISA systems, however, any
EISA interrupt channel can be individually programmed to recognize either
shareable, level-triggered or non-shareable, positive edge-triggered interrupt
requests. Level-triggered operation facilitates the sharing of a single system in-
terrupt request line by a number of I/O devices. Level-triggered interrupts
might be used, for example, to share a single interrupt request line between a
number of serial ports.

Automatic System Configuration

EISA systems implement the capability to perform automatic configuration of
system resources and EISA expansion boards each time the system is powered

Chapter 1: EISA Overview

13

up. System resources such as serial ports, parallel ports, VGA and other manu-
facturer-specific functions can be fully configured programmatically.

The EISA expansion card manufacturer includes a configuration file with each
expansion card shipped. The configuration files can be included with either
new, fully-programmable EISA boards or switch-configured ISA or EISA
products. The configuration files are used at system configuration time to
automatically assign global system resources (such as DMA channels and inter-
rupt levels), thus preventing resource conflicts between the installed expansion
cards. For switch-configurable boards, the configuration files can be used to de-
termine the proper assignment of resources and to instruct the user about the
proper selection of switch settings.

To accomplish the automatic configuration of the system board and expansion
cards, EISA uses slot-specific I/O port ranges. An EISA card using these ranges
can be installed into any slot in the system without the risk of I/O range con-
flicts. These I/O ranges can be used for expansion card initialization or for
normal I/O port assignments that are guaranteed not to conflict with any other
expansion board installed in the system.

EISA also includes a product identification mechanism for system boards and
EISA expansion cards. The product identifier allows products to be identified
during the configuration and initialization sequences for the system and EISA
expansion boards. EISA includes guidelines for selection of a product identi-
fier. The identifier for each product is selected by the product manufacturer
and does not need the approval of any other party in the industry. However, a
manufacturer-specific ID is assigned to each vendor by BCPR Services, the firm
that manages the EISA specification.

EISA Feature/Benefit Summary

Table 1-1 provides a summary of the key features and benefits of the Extended
Industry Standard Architecture.

EISA System Architecture

14

Table 1-1. EISA Feature/Benefit Summary
Feature Benefit

Backward compatible with all ISA
expansion boards

Customer base retains value of installed ISA
cards.

Board size 63 square inches of board space permits imple-
mentation of powerful, highly-integrated ex-
pansion cards.

+5Vdc at approximately 4.5A
available at each expansion slot

Ample power for expansion cards employing a
large amount of highly-integrated logic.

32-bit address and data buses Support for 4GB of memory and 32-bit transfers.

Programmable level- or edge-
triggered interrupt recognition

Interrupt request lines may be shared by multi-
ple devices.

Enhanced DMA capabilities

Both ISA and EISA DMA devices have access to
memory above 16MB. New bus cycle types and
32-bit data bus allow faster transfer speeds
(rates of up to 33 MB/second).

Bus Master Support

Support for up to fifteen bus master expansion
cards, fast burst bus transfers, automatic data
bus steering and control line translation.

Automatic system configuration Supports automatic configuration of the EISA
system board and EISA expansion cards each
time the system is powered up. Also provides
help to the end user in configuring older ISA
expansion cards.

Chapter 2: EISA Bus Structure Overview

15

Chapter 2
The Previous Chapter

The previous chapter provided an overview of the features and benefits real-
ized in the EISA environment.

This Chapter

This chapter introduces the EISA bus structure and its relationship to the sys-
tem board and expansion cards. The concepts of master and slave are intro-
duced and defined. The types of bus masters and slaves are identified.

The Next Chapter

The next chapter, “EISA Bus Arbitration,” describes the bus arbitration mecha-
nism implemented in all EISA systems.

Community of Processors

The signals provided on each EISA expansion connector can be divided into
four basic categories:

• Address bus group
• Control bus group
• Data bus group
• Bus arbitration group

Three of these four signal groups are present on the expansion slots found in
IBM PC/XT/AT products and compatible computers. In EISA, the bus arbitra-
tion group has been added.

The EISA specification defines the signals found on the expansion connectors,
as well as the permissible bus cycle types that can be performed by bus masters
and the software protocol that bus masters must use when communicating
with each other. It also defines the support logic residing on the system board

EISA System Architecture

16

and expansion cards that is necessary to support EISA capabilities. Examples
would be the system board's Central Arbitration Control (CAC) and the data
bus steering logic, which are discussed in subsequent sections.

Limitations of ISA Bus Master Support

The IBM PC XT/AT and compatible products are essentially single-processor
systems. They have one microprocessor located on the system board that uses
the address, control and data buses to communicate with the various memory
and I/O devices found in a system.

The microprocessor on the system board is the bus master most of the time in a
PC/XT/AT. It uses the bus to fetch instructions and to communicate with
memory and I/O devices when instructed to do so by the currently executing
instruction.

Upon occasion, however, devices other than the microprocessor require the use
of the bus in order to communicate with other devices in the system. These de-
vices are the DMA controller and the RAM refresh logic. The DMA controller
must use the bus to transfer data between I/O devices and memory. The re-
fresh logic must use the bus periodically to refresh the information stored in
DRAM memory.

When a device other than the microprocessor (such as the DMA controller or
the refresh logic) requires the use of the bus, it must force the microprocessor to
give up control of the bus. This is accomplished by asserting the microproces-
sor's HOLD (Hold Request) input. Upon detecting HOLD asserted, the micro-
processor electrically disconnects itself from the address, control and data
buses so the requesting device can use them to communicate with other de-
vices. This is called “floating” the bus. The microprocessor then asserts its
HLDA (Hold Acknowledge) output, informing the requesting device that it has
yielded the bus, making it the new bus master. The device remains bus master
as long as it keeps the microprocessor's HOLD input asserted.

When a bus master other than the microprocessor on the system board has
completed using the bus, it deasserts the microprocessor's HOLD input, allow-
ing the microprocessor to re-connect itself to the bus and to become bus master
again.

Although it is possible for an expansion card inserted into an IBM PC/XT/AT
expansion slot to become bus master, there is a major drawback. When an ex-
pansion card becomes bus master in a PC/XT/AT, it can remain bus master as

Chapter 2: EISA Bus Structure Overview

17

long as it keeps the microprocessor's HOLD line asserted. There are no safety
mechanisms built into a PC/XT/AT to prevent a bus master card from mo-
nopolizing the use of the bus to the exclusion of the microprocessor and the
RAM refresh logic on the system board and potential bus master cards installed
in other expansion connectors.

If, due to poor design or a failure, a bus master expansion card monopolizes
the bus for an inordinate amount of time, the main microprocessor cannot con-
tinue to fetch and execute instructions. This could have serious consequences.
In addition, the refresh logic is unable to become bus master on a timely basis
and data in DRAM memory could be lost. Finally, other bus master cards are
not able to become bus master and transfer data. To summarize, severe prob-
lems can be incurred when bus master expansion cards are used in a
PC/XT/AT.

EISA Bus Master Support

The ISA bus mastering problem is fixed in the EISA environment by the addi-
tion of the EISA bus arbitration signals and a Central Arbitration Control
(CAC) on the EISA system board. The CAC provides a method for resolving
situations where multiple bus masters are competing for the use of the bus. As
explained in the chapter entitled “EISA Bus Arbitration,” a bus master is not
permitted to monopolize the bus in an EISA machine.

By establishing a method for resolving bus conflicts, EISA creates a system that
can safely support multiple bus masters. This means that EISA products sup-
port use of the bus by:

• The microprocessor
• The DMA controller on the system board
• The refresh logic on the system board
• Bus master cards installed in expansion connectors

Typically, a bus master card is quite intelligent, incorporating a microprocessor
and its own local ROM, RAM and I/O devices. An example would be a disk
controller card built around an 80386 microprocessor, executing its own soft-
ware from its local (on-board) ROM memory. It stores data received from main
memory in its local memory prior to writing it to disk. It can read large
amounts of data from disk, store it in its local memory and forward it to an-
other device, such as memory on the system board, when necessary. It controls
an array (group) of eight disk drives.

EISA System Architecture

18

Other bus masters could issue high-level commands or requests to the example
disk controller. An example would be a request sent to the disk controller card
to search for a database file called “TOM.DBF” on the eight disk drives it con-
trols and, if found, read a particular record and send it back to the requesting
bus master. After issuing the request to the disk controller card, the requesting
bus master would surrender the EISA bus and continue other local processing
until the disk controller card responds. Upon completing the search, the disk
controller card would become bus master and transfer the requested data into
system memory for the other bus master to use.

An EISA system can safely incorporate a number of intelligent bus master
cards, each essentially running on its own. When required, they can communi-
cate with each other and transfer data between themselves either directly or
through system memory. The EISA system is designed to support multi-
processing — multiple processors, each handling a portion of the overall task.
Properly implemented, the parallel processing accomplished in this type of sys-
tem is extremely efficient.

Figure 2-1 illustrates the EISA system bus structure. The basic system compo-
nents are:

• System board
• ISA/EISA expansion cards

Chapter 2: EISA Bus Structure Overview

19

Figure 2-1. The EISA Bus — a Shared Resource

The user may install two basic classes of devices on the expansion bus:

• ISA-compatible expansion cards
• EISA-compatible expansion cards

All EISA and ISA expansion devices fall into one of two categories:

• A master is a device that executes bus cycles to communicate with other

devices. Any type of master can communicate with any type of slave in the
system. The system board provides data bus steering logic that copies the

EISA Bus

M
A

K
1#

M
A

K
2#

M
A

K
n#

R
EF

A
C

K

C
P

U
A

C
K

D
M

A
A

C
K

M
R

E
Q

1#

M
R

E
Q

2#

M
R

E
Q

n#

R
EF

R
E

Q

C
PU

R
E

Q

D
M

A
R

E
Q

Central Arbitration Control

Bus
Master

1

Bus
Master

2

Bus
Master

n

Refresh
Logic

Host
CPU DMAC

System
Board
Slave

Slave
Card

Slave
Card

Slave
Card

EISA System Architecture

20

data between data paths and translates EISA/ISA control signals when
necessary.

• A slave is a device that a master reads from or writes to. A slave may be ei-
ther a memory or an I/O slave.

There is only one type of ISA master — the ISA 16-bit bus master. This is a de-
vice that attaches to the ISA Bus and is capable of executing bus cycles to com-
municate with memory or I/O slaves. This is accomplished by interfacing the
bus master card to DMA channel five, six or seven with the channel pro-
grammed to operate in cascade mode. A more detailed description of bus mas-
tering in the ISA environment can be found in the chapter entitled “DMA and
Bus Mastering” in the MindShare book entitled ISA System Architecture.

EISA System Bus Master Types

In an EISA system, there are five basic types of bus masters:

• 16-bit ISA or EISA bus master — This is a 16-bit ISA or EISA device that

attaches to the EISA bus and is capable of executing bus cycles to commu-
nicate with any slave. When communicating with a 32-bit EISA slave or an
8-bit ISA slave, the data bus steering logic on the system board must some-
times aid in the transfer.

• 32-bit EISA bus master — This is a 32-bit device that attaches to the EISA
bus and is capable of executing bus cycles to communicate with any slave.
When communicating with 8 or 16-bit slaves, the data bus steering logic on
the system board must sometimes aid in the transfer.

• Main CPU — The CPU may communicate with any ISA or EISA Slave or
with devices resident on the CPU's local bus structure. When the micro-
processor attempts to perform a transfer utilizing one or more data paths
not connected to the target slave, the data bus steering logic on the system
board must aid in the transfer.

• The refresh logic — Used to refresh DRAM memory throughout the sys-
tem.

• DMA controllers — Used to transfer information between an I/O device
and system memory.

Chapter 2: EISA Bus Structure Overview

21

Types of Slaves in EISA System

Slaves fall into the following categories:

• 8-bit ISA I/O and memory slaves
• 16-bit ISA I/O and memory slaves
• 16-bit EISA I/O and memory slaves
• 32-bit EISA I/O and memory slaves
• 8, 16 or 32-bit slaves on the CPU's local bus

EISA System Architecture

22

Chapter 3: EISA Bus Arbitration

23

Chapter 3
The Previous Chapter

The previous chapter provided background on ISA’s inability to support mul-
tiple processors in a fair fashion and introduced the EISA bus and the role of
the Central Arbitration Control logic on the EISA system board. The types of
bus masters and slaves were identified.

This Chapter

The bus arbitration scheme used by the EISA Central Arbitration Control is de-
scribed in detail.

The Next Chapter

The next chapter, “Interrupt Handling,” describes the methods used to detect
and service interrupt requests in both the ISA and EISA environments.

EISA Bus Arbitration Scheme

All EISA systems incorporate a device known as the Central Arbitration Con-
trol (CAC) on the system board. The CAC's task is to arbitrate among the out-
standing requests for bus ownership and to then grant the bus to the winner.

There are four classifications of devices that can issue requests to the CAC:

• Main CPU
• Expansion bus masters
• Refresh controller on the system board
• DMA Controller (DMAC) on the system board

Figure 3-1 illustrates the CAC's relationship to potential bus masters.

EISA System Architecture

24

Figure 3-1. Block Diagram of the Central Arbitration Control (CAC)

The CAC uses a multi-level, rotating priority arbitration scheme. Figure 3-2 de-
picts this rotational priority scheme. On a fully loaded bus, the order in which
devices are granted bus access is independent of the order in which they gen-
erate bus requests, since devices are serviced based on their position in the ro-

Chapter 3: EISA Bus Arbitration

25

tational order. The DMAC is given a high order of priority to assure compati-
bility with ISA expansion boards that require short bus latency (because they
don’t have any buffering). The EISA bus masters are assigned a lower priority
and designers of EISA bus master cards must therefore provide for longer bus
latency by incorporating buffers.

The top priority level uses a 3-way rotation to grant bus access sequentially to a
DMA channel, the refresh controller, and a device from the 2-way rotation (ei-
ther the main CPU or a bus master card). A DMA channel, the refresh control-
ler and a device from the 2-way rotation each gain access to the bus at least one
of every three arbitration cycles (depending on what devices are requesting
service). A device that does not request the bus is skipped in the rotation. The
main CPU is allowed to retain control of the bus when no other devices are re-
questing bus mastership. In systems that provide the main CPU with a look-
through cache controller, the host processor only requires the use of the bus
under the following conditions:

• a cache read miss
• an I/O read or write

In a system wherein the main CPU doesn't have a cache (or uses a look-aside
cache), the main CPU frequently requests the use of the bus.

The DMA controller is programmed during the POST to use a fixed priority
scheme in evaluating which DMA channel to service next. As pictured in figure
3-2, this means that DMA channel zero has the highest priority, followed by
channels two – seven. It should be noted that DMA channel four is unavailable
because it is used to cascade the slave DMA controller through the master (see
the chapter entitled “DMA and Bus Mastering” in the MindShare book entitled
ISA System Architecture).

NMI interrupts are given special priority (because NMI is used to report critical
errors). When an NMI interrupt occurs, the arbitration mechanism is modified
so that the bus master cards and the DMACs are bypassed each time they come
up for rotation. This gives the CPU complete control of the bus for NMI servic-
ing.

DMA priorities can be modified by programming the DMAC control register to
use rotating priority. This scenario is pictured in figure 3-3. Each DMA channel
then has essentially the same priority as all of the others.

EISA System Architecture

26

Figure 3-2. CAC with DMACs Programmed for Fixed Priority

Refresh

CPU
or

Bus
Master

CPUBus
Masters

Bus
Master

1
Bus

Master
2

Bus
Master

3

Bus
Master

4

Bus
Master

n

Highest
Priority
DMA

Channel

Channel 0
Channel 1
Channel 2
Channel 3
Channel 5
Channel 6
Channel 7

Chapter 3: EISA Bus Arbitration

27

Figure 3-3. CAC with DMACs Programmed for Rotational Priority

Refresh

CPU
or

Bus
Master

CPUBus
Masters

Bus
Master

1
Bus

Master
2

Bus
Master

3

Bus
Master

4

Bus
Master

n

Next
DMA

Channel

Master
DMAC

Slave
DMAC

Channel
5

Channel
6

Channel
7

Channel
4

(cascade)

Channel
0

Channel
1

Channel
2

Channel
3

EISA System Architecture

28

Preemption

When one of the bus masters requires the use of the bus to communicate with
another device, it must assert its request line (MREQn#) to the CAC (refer to
figure 3-1). After deciding which device currently requesting the bus is next in
the rotation, the CAC asserts the acknowledge line (MAKx#) associated with
the bus master that currently owns the bus. In this way, the CAC preempts the
current bus master, commanding it to relinquish control of the bus. Upon being
preempted by removal of its acknowledge, the current bus master must relin-
quish control of the bus within a prescribed period of time. If the current bus
master is an EISA bus master card, it must release the bus within 64 cycles of
the bus clock signal (BCLK). Since BCLK has a nominal frequency of 8MHz, or
125ns per cycle, 64 BCLK cycles equates to eight microseconds. If the current
bus master is a DMA channel programmed for one of the new EISA bus cycle
types (rather than the ISA-compatible bus cycle), the DMA channel has 32
BCLKs , or four microseconds, to release the bus. DMA channels programmed
to run ISA-compatible DMA bus cycles cannot be preempted. Care should
therefore be taken when utilizing an ISA DMA channel to perform a block data
transfer using either block or demand transfer modes. If the transfer is too long,
other devices requiring the use of the bus, such as the refresh controller, may be
forced to wait too long.

The current bus master indicates that it is relinquishing control of the bus by
de-activating its CAC request line (MREQx#). If it doesn't relinquish control
within eight microseconds, the CAC takes the following actions:

• asserts the reset signal on the EISA bus to force the current bus master off

the bus
• asserts NMI to alert the main microprocessor that a bus timeout has oc-

curred
• grants the bus to the main CPU so that it can respond to the NMI

If, on the other hand, the current bus master honors the preemption, relinquish-
ing the bus and deasserting its request to the CAC, the CAC then grants the bus
to the next bus master in the rotation that is requesting the use of the bus.

As illustrated in figure 3-1, the main CPU, refresh logic and the DMA controller
each have a pair of request/acknowledge lines connecting it to the CAC. In ad-
dition, there is also a pair of request/acknowledge lines connected to each
EISA connector in the system. The EISA specification provides support for up
to fifteen EISA bus masters, numbered from zero to fourteen. MREQ0# and

Chapter 3: EISA Bus Arbitration

29

MAK0# are typically used to implement an EISA-style bus master that is em-
bedded on the system board. MREQ1# and MAK1# are connected to EISA ex-
pansion connector one, MREQ2# and MAK2# to EISA connector two, etc. It
should be noted, however, that the CAC encapsulated in the Intel 82350DT
EISA chip set only has six pairs of EISA request/acknowledge lines and can
therefore only support EISA bus master cards in a maximum of six EISA card
connectors. This explains why some EISA machines with more than six EISA
slots only support bus master cards in six of them.

If the current bus master is preempted during a multiple bus cycle transfer, it
will give up the bus as described above, and, after waiting two BCLKs, it re-
asserts its request line to request the use of the bus again.

Example Arbitration Between Two Bus Masters

The timing diagram in the figure 3-4 illustrates bus arbitration between two
Bus masters.

Figure 3-4. Arbitration between Two Bus Masters

BCLK

MREQ1#

MAK1#

MREQ2#

MAK2#

BUS MASTER Host CPU Bus Master 1 Bus Master 2 Bus Master 1

1

2

3

4

5

6

7

8

9

10

11

EISA System Architecture

30

The following steps define the sequence of events illustrated in figure 3-4. The
step numbers correspond to the reference numbers in the illustration.

1. Initially, the main processor owns the bus.
2. The bus master in slot one requests the use of the bus by asserting MREQ1#

(Master Request, slot 1) to the CAC.
3. After the CAC has removed ownership of the bus from the main processor

and the main processor signals its willingness to give up ownership, the
CAC grants ownership to bus master one by asserting MACK1# (Master
Acknowledge, slot 1). Bus master one now owns the bus and can initiate
one or more bus cycles.

4. The bus master in slot two signals its request for bus mastership by assert-
ing MREQ2# to the CAC.

5. The CAC signals bus master one that it must give up bus mastership by
removing MACK1#.

6. After detecting its MACK1# deasserted, bus master one has up to eight mi-
croseconds to release the bus. This gives it time to complete one or more
bus cycles prior to release. Bus master one signals its release of the bus by
deasserting MREQ1#.

7. The bus is granted to bus master two by the CAC when it asserts MACK2#.
8. Bus master one requires the use of the bus again to either complete its pre-

viously-interrupted series of transfers or to initiate a new transfer. It signals
its request to the CAC by asserting MREQ1#.

9. Bus master two has finished using the bus, so it voluntarily gives up own-
ership by deasserting MREQ2#.

10. The CAC removes ownership from bus master two by deasserting
MACK2#.

11. The CAC grants the bus to bus master one again by asserting MACK1#.

Memory Refresh

The EISA system board incorporates a refresh controller that requests the use
of the bus once every fifteen microseconds to refresh a row of DRAM memory.
16-bit ISA bus masters that hold the bus longer than fifteen microseconds must
perform memory refresh bus cycles at the fifteen microsecond interval.

The EISA refresh controller includes a 14-bit row counter that drives its con-
tents onto address lines 15:2 when the refresh controller becomes bus master.
The refresh controller also places a value on BE#[3:0] to be transferred to A[1:0]
and SBHE#.

Chapter 3: EISA Bus Arbitration

31

Each time that the refresh controller requests the use of the bus and the request
is not granted within fifteen microseconds, the refresh controller increments its
uncompleted refresh count. This counter can count up to four uncompleted re-
fresh bus cycles. When the refresh controller succeeds in gaining control of the
bus, it performs a refresh bus cycle and decrements the uncompleted refresh
count by one. If more refreshes are queued up (the count isn't exhausted), the
refresh controller immediately requests the use of the bus again without wait-
ing the normal period of fifteen microseconds.

EISA System Architecture

32

Chapter 4: Interrupt Handling

33

Chapter 4
The Previous Chapter

The previous chapter described the bus arbitration scheme utilized in EISA
machines.

This Chapter

An in-depth discussion of interrupt request handling in the ISA environment
can be found in the chapter entitled “Interrupt Handling” in the MindShare
book entitled ISA System Architecture. This chapter provides a brief review of
the ISA interrupt request handling method and a detailed description of the
EISA method.

The Next Chapter

The signals and support logic that comprise the ISA bus impose certain limita-
tions on performance and capabilities. The EISA specification builds upon the
ISA bus, adding new bus signals and system board support logic. The end re-
sult is backward-compatibility with all ISA cards and improved performance
and capabilities for EISA cards. The next chapter provides a detailed descrip-
tion of the extensions to the ISA bus and support logic.

ISA Interrupt Handling Review

The Intel 8259 interrupt controller's interrupt request inputs can be pro-
grammed to recognize either a rising-edge or a static high level as a valid inter-
rupt request. The programmer may select either of these recognition modes for
all eight inputs at once. There is no provision for the selection of either type on
an input-by-input basis. On an ISA machine, the 8259 interrupt controllers are
programmed to recognize a rising-edge as a valid interrupt request on its eight
inputs. The following section describes the two shortcomings inherent in ISA
interrupt handling.

EISA System Architecture

34

ISA Interrupt Handling Shortcomings

Phantom Interrupts

Internally, the 8259 has a pull-up resistor on each of its IRQ inputs. When an
ISA expansion card must generate an interrupt request, the line is driven low
by the card and is then allowed to go high again. The low-to-high transition is
registered as an interrupt request by the 8259 interrupt controller on the system
board. The 8259 specification also demands that the IRQ line must remain high
until after the leading-edge of the first interrupt acknowledge bus cycle gener-
ated by the host processor. The pull-up resistor ensures that this will be the
case.

Consider the case where an ISA card is designed to keep its IRQ line low until a
request must be generated. At that time, the card would allow the IRQ line to
go high and would maintain the high until the request has been serviced. The
transition from low-to-high would be registered as a request by the 8259. When
the request has been serviced, the card would drive the line low again and keep
it low until the next request is to be generated. Although this design would
work, a problem may arise.

A transitory noise spike on this interrupt request line could register as a valid
interrupt request. When the microprocessor issues the first of the two interrupt
acknowledge bus cycles, however, the IRQ line will already be low again. This
means that the IRQ line's respective IRR (Interrupt Request Register) bit will
not be active. The first interrupt acknowledge resets the highest-priority IRR bit
and sets its associated bit in the ISR (In-Service Register). In this case, since the
IRR bit is no longer set because the request was of too short a duration (a ghost,
or phantom, interrupt), the 8259 must take special action. The 8259 is designed
to automatically return the interrupt vector for its number seven input in this
case. When the microprocessor then generates the second interrupt acknowl-
edge, the 8259 sends back the vector associated with its number seven input.
On the system’s master 8259, this is 0Fh, the vector of IRQ7. On the slave, it is
77h, the IRQ15 interrupt vector. The microprocessor therefore jumps to either
the IRQ7 or the IRQ15 interrupt service routine.

In these two routines, therefore, the programmer must perform a check to see if
the IRQ7 or the IRQ15 was real. This is accomplished by reading the contents of
the respective 8259's ISR register and checking to see if bit seven is really set. If
it is, then the request is real and the programmer should execute the remainder
of the interrupt service routine to service the request. If, on the other hand, the

Chapter 4: Interrupt Handling

35

bit is cleared, it was a phantom or ghost interrupt and the programmer should
execute an interrupt return (the IRET instruction) to return to the interrupted
program flow.

ISA card designers can avoid this problem by designing the card's IRQ output
driver to remain tri-stated when not requesting service, allowing the pull-up
resistor inside the 8259 to keep it high. The line is not prone to pick up noise
spikes when it's high. When a request must be generated, the card drives the
IRQ line low and then lets it go high again. This low-to-high transition registers
as a request in the 8259. When the microprocessor generates the first interrupt
acknowledge, the line is guaranteed to be high and the request is therefore
valid.

Limited Number of IRQ Lines

In the ISA environment, IRQ lines are not shareable because only one transition
is registered if more than one card generates a transition. The low-to-high tran-
sition generated by the first card is recognized by the interrupt controller and
any subsequent transitions are ignored until the first request has been serviced.
More than one ISA device may share an IRQ line as long as it is guaranteed
that they never generate requests simultaneously. Since only one device may
use each IRQ line, a fully-loaded machine may easily use up all of the available
lines. An in-depth discussion of interrupt handling in the ISA environment
may be found in the MindShare book entitled ISA System Architecture.

EISA Interrupt Handling

Shareable IRQ Lines

The interrupt controllers used in the EISA environment are a superset of the In-
tel 8259A controller. The 8259A allows the programmer to gang-program all
eight IRQ inputs as either edge or level-triggered. In the EISA environment,
machines must be capable of supporting both ISA and EISA-style cards. This
means that the programmer must have the ability to individually select each
IRQ input as either edge or level-triggered. The EISA interrupt controller has
added an additional register for this purpose.

The ELCR, or Edge/Level Control Register, provides this selectivity. The mas-
ter interrupt controller's ELCR is located at I/O address 04D0h, while the
slave's is at I/O address 04D1h. Each of these registers is default programmed

EISA System Architecture

36

to edge-triggering upon power-up. Tables 4-1 and 4-2 illustrate their respective
bit assignments.

Table 4-1. Master Interrupt Controller's ELCR Bit Assignment
Bit Description

7 0 = IRQ7 is edge-sensitive and non-shareable, 1 = IRQ7 is level-sensitive
and shareable.

6 0 = IRQ6 is edge-sensitive and non-shareable, 1 = IRQ6 is level-sensitive
and shareable.

5 0 = IRQ5 is edge-sensitive and non-shareable, 1 = IRQ5 is level-sensitive
and shareable.

4 0 = IRQ4 is edge-sensitive and non-shareable, 1 = IRQ4 is level-sensitive
and shareable.

3 0 = IRQ3 is edge-sensitive and non-shareable, 1 = IRQ3 is level-sensitive
and shareable.

2 always 0 because the master's IRQ2 input is used to cascade the slave
interrupt controller’s output through the master.

1 IRQ1 is dedicated to the interrupt request output of the keyboard inter-
face. This bit must be 0, selecting edge-sensitive and non-shareable.

0 IRQ0 is dedicated to the interrupt request output of the system timer.
This bit must be 0, selecting edge-sensitive and non-shareable.

Chapter 4: Interrupt Handling

37

Table 4-2. Slave Interrupt Controller's ELCR Bit Assignment
Bit Description

7 0 = IRQ15 is edge-sensitive and non-shareable, 1 = IRQ15 is level-
sensitive and shareable.

6 0 = IRQ14 is edge-sensitive and non-shareable, 1 = IRQ14 is level-
sensitive and shareable.

5 IRQ13 is dedicated to the error output of the numeric coprocessor. This
bit must be 0, selecting edge-sensitive and non-shareable. In reality,
IRQ13 is shared by the numeric coprocessor and the chaining interrupt
output of the DMA controller. More information regarding chaining can
be found in the chapter entitled “EISA DMA.”

4 0 = IRQ12 is edge-sensitive and non-shareable, 1 = IRQ12 is level-
sensitive and shareable.

3 0 = IRQ11 is edge-sensitive and non-shareable, 1 = IRQ11 is level-
sensitive and shareable.

2 0 = IRQ10 is edge-sensitive and non-shareable, 1 = IRQ10 is level-
sensitive and shareable.

1 0 = IRQ9 is edge-sensitive and non-shareable, 1 = IRQ9 is level-sensitive
and shareable.

0 IRQ8 is dedicated to the alarm output of the Real-Time Clock chip. This
bit must be 0, selecting edge-sensitive and non-shareable.

When programmed to recognize level-sensitive interrupt requests, the inter-
rupt controller recognizes a low on an IRQ line as a request and the interrupt
request line may be shared by two or more devices. The following paragraphs
define how this works.

During the POST, software scans the area of memory space set aside for device
ROMs, typically C0000h – DFFFFh, to determine if any expansion cards have
device ROMs. When a device ROM is detected, the POST jumps to the initiali-
zation routine in the ROM to execute the card's POST and to install the start
addresses of its interrupt service and BIOS routines into the proper entries in
the interrupt table in memory. The ROM's initialization routine reads the cur-
rent pointer from the interrupt table entry, saves it and writes the pointer to the
device ROM's interrupt service routine in its place. After testing and initializing
the card, the ROM code performs a return to the system POST. The POST then
continues to scan the device ROM memory area for other device ROMs. If any
are found, the same process is repeated. When another card is using the same
IRQ line, its ROM code reads the current pointer from the interrupt table entry
and saves it. This pointer points to the interrupt service routine within a previ-
ously detected device ROM for another EISA I/O card that is sharing this IRQ

EISA System Architecture

38

line. The second card's ROM code then stores a pointer to its own interrupt ser-
vice routine into the IRQ line's assigned interrupt table entry. In this way, a
linked list of interrupt service routine start addresses is created. Any loadable-
device drivers or TSRs that use shareable interrupt request lines should do the
same.

Each shareable interrupt request line has a pull-up resistor on it (internal to the
EISA interrupt controller). When no request is being generated, or when no
I/O devices are physically connected to the line, the line is pulled-up to a high
level. This provides a good deal of noise immunity on the line, preventing spu-
rious requests.

Figure 4-1 illustrates how multiple EISA I/O cards can share the same IRQ line.
An I/O device that places a low on an interrupt request line when it generates
a request may share the line with other devices that use it the same way. When
a board of this type must generate a request, it acts as follows:

• Through an open-collector driver, it creates a path to ground. This places a

low on the 8259's request input. If other I/O devices are sharing the line
and generate requests simultaneously, the shared IRQ line is low.

• When an I/O board generates a request, it should also set its interrupt
pending bit in a pre-defined I/O port on the card.

Chapter 4: Interrupt Handling

39

Figure 4-1. IRQ Line Sharing

When the 8259 senses a low on a shareable request input, it generates an inter-
rupt request to the microprocessor. When the microprocessor requests the in-
terrupt vector, the 8259 responds with the vector for the line currently being
serviced. The microprocessor then jumps to the interrupt service routine for the
last device ROM detected during the POST. In this routine, an I/O read is per-
formed from the card's interrupt pending register to determine if this card is
generating a request. If the card's interrupt pending bit is set, the program con-
tinues and executes the remainder of the card's interrupt service routine to ser-
vice the request. If the card's interrupt pending bit isn't set, however, the
program jumps to the next interrupt service routine in the chain. The second
service routine then polls its respective card's interrupt pending register to de-
termine if it is generating a request. The act of servicing the request (for exam-
ple, sending a character to a serial port) causes the requesting board's interrupt

Interrupt Pending

Interrupt Pending

1

1

IRQ#

IRQ#

IRQn# Interrupt
Controller

EISA I/O Card

EISA I/O Card

EISA System Architecture

40

pending bit to be cleared. The board also ceases to provide a path to ground for
the interrupt request line.

If more than one I/O device were generating requests simultaneously, the
other board or boards are still driving a low onto the shared request line. The
8259 would therefore immediately sense another pending request and proceed
as outlined above. This time, the interrupt pending bit for the board that was
already serviced is determined to be cleared, a jump is executed to the next
service routine in the chain to determine if its interrupt pending bit is set.

Since the program must go through a linked service routine list to determine
which board(s) is currently generating a request, it stands to reason that the
lower down in the list a device is, the more time it will take to service its re-
quest (if other devices, further up the list, are also generating requests). This la-
tency, or delay, could cause problems ranging from slow servicing of a device
right up to overflow conditions and missing characters. The problem can be
solved in one of two ways:

1. Move some devices to other interrupt requests lines.
2. During the configuration process, install the devices requiring the smallest

latency first and the others later in the process.

Phantom Interrupt Elimination

All IRQ inputs that are configured as level-sensitive, shareable inputs assume
the high state when no requests are pending or when the IRQ line is unused.
This renders these inputs relatively noise-free, substantially decreasing the pos-
sibility of phantom interrupts.

Chapter 5: Detailed Description of EISA Bus

41

Chapter 5
The Previous Chapter

The previous chapter provided a detailed description of interrupt handling in
the EISA environment.

This Chapter

This chapter provides a description of all the signals on the EISA bus.

The Next Chapter

In the next chapter, the types of bus cycles performed by the main CPU and
EISA bus masters are described.

Introduction

The EISA bus consists of two sets of signal lines:

• the ISA Bus
• the extension to the ISA Bus (the EISA bus extension)

Figure 5-1 illustrates the construction of the EISA connector. When installed,
ISA boards are physically stopped by the EISA access key and make contact
only with the ISA contacts. When an EISA board is installed, however, an
alignment notch in the board allows it to bottom out, making contact with both
the ISA and the EISA contacts.

EISA System Architecture

42

Figure 5-1. The EISA Connector

Many of the ISA signals have already been defined in preceding sections of this
book and all of them are fully defined in the MindShare book entitled ISA Sys-
tem Architecture. This section is confined to a description of the EISA signals.
The following are the signal groups that comprise the EISA Bus.

• Address bus extension
• Data bus extension
• Bus Arbitration signal group
• Burst handshake signal group
• Bus cycle definition signal group

EISA access key

EISA contacts

ISA contacts

Chapter 5: Detailed Description of EISA Bus

43

• Bus cycle timing signal group
• Lock signal
• Slave size signal group
• AEN signal

The following paragraphs provide a description of each of these signal groups.

Address Bus Extension

One of the restrictions imposed by the ISA bus structure is a function of the
width of the address bus. It consists of 24 address lines, A[23:0]. This permits
the microprocessor to address any memory location between address 000000h
and FFFFFFh, a range of 16MB.

With the advent of multi-tasking, multi-user operating systems, access to a
greater amount of memory became an imperative. The EISA specification ex-
pands the address bus to 32 bits (A31:0]), and also adds the byte enable lines,
BE#[3:0], to provide 32-bit bus master address support. The ISA bus includes
the following address lines:

• SA[19:0]
• LA[23:17]
• SBHE#

The EISA address bus consists of the following signals:

• SA[1:0] (ISA bus)
• SBHE# (ISA bus)
• LA[23:17] (ISA bus)
• LA#[31:24] (EISA extension)
• BE#[3:0] (EISA extension)
• LA[16:2] (EISA extension)

The EISA specification extends the size of the LA Bus to include LA[16:2] and
LA#[31:24]. Refer to figure 5-2. Combined with the previously-defined SA bus
and LA signal groups on the ISA portion of the bus, this extends the address
bus to a full 32-bits, allowing the current bus master to generate any memory
address in the range 00000000h – FFFFFFFFh. This is a range of 4GB (giga = bil-
lion).

EISA System Architecture

44

Figure 5-2. The EISA Connector Address Lines

LA#[31:24] are asserted low to prevent 16-bit bus masters from inadvertently
selecting 32-bit memory cards residing above 16 MB. When a 16-bit bus master
places an address on the address bus, it is only using lines A[23:0]. If address
lines LA#[31:24] were allowed to float, a 32-bit memory card that resides above
the 16MB boundary might be inadvertently selected. Rather, LA#[31:24] are
pulled high with pull-up resistors on the system board, ensuring that they are
deasserted unless asserted by a 32-bit bus master. 32-bit EISA memory cards

Chapter 5: Detailed Description of EISA Bus

45

are designed to recognize that these upper address lines carry inverted address
information (0 on a line is a logical 1 and a 1 is a logical 0).

Since the address information on the LA bus shows up sooner than the address
on the SA bus (due to address pipelining and the fact that the LA bus bypasses
the address latch on the system board), memory cards that use the LA lines can
perform an early address decode. This allows the memory card designer to use
slightly slow (inexpensive) memory chips and yet achieve higher throughput.
In addition, the fact that the LA bus now includes the lower part of the address
bus allows memory cards that use SCRAM or Page Mode RAM to determine if
the next access will be in the same row of memory (because the row portion of
the DRAM address is carried over the lower portion of the address bus).

The EISA specification also adds the four byte enable signal lines, BE#[3:0], al-
lowing 32-bit bus masters to generate addresses in doubleword address format
(A[31:2] plus the BE lines) and 32-bit slaves to see the address in 32-bit dou-
bleword format.

Data Bus Extension

The EISA specification extends the width of the data bus by adding two addi-
tional data paths consisting of SD[23:16] and D[31:24]. Using these data paths
plus the two ISA data paths allows 32-bit bus masters to transfer four bytes (a
doubleword) during a single transfer when communicating with 32-bit slaves.

Bus Arbitration Signal Group

Under EISA, two signals have been added to allow implementation of bus mas-
ter cards. They are described in table 5-1.

EISA System Architecture

46

Table 5-1. EISA Bus Master Handshake Lines

Signal Name

Full Name

Description

MREQx# Master Request for slot x When a bus master in a slot requires
the use of the bus to perform a trans-
fer, it asserts its slot-specific MREQx#
signal line. This signal is applied to the
CAC on the system board, which then
arbitrates its priority against other
pending bus requests.

MAKx# Master Acknowledge for
slot x

When the CAC is ready to grant the
bus to a requesting bus master
(MREQx# is asserted), the CAC asserts
the bus master's MAKx# slot-specific
signal line to inform the bus master
that it has been granted the bus.

Figure 5-3 illustrates the relationship of the master request and acknowledge
lines to the CAC. The subject of bus arbitration is covered in detailed the chap-
ter entitled “EISA Bus Arbitration.”

Chapter 5: Detailed Description of EISA Bus

47

Figure 5-3. The Bus Master Handshake Lines

EISA System Architecture

48

Burst Handshake Signal Group

The EISA specification adds two signal lines to support initiation of burst mode
(Type C) bus cycles. They are described in table 5-2.

Table 5-2. The Burst Handshake Lines
Signal
Name

Full Name

Description

SLBURST# Slave Burst When addressed, a slave asserts SLBURST# to indi-
cate that it supports burst cycles. If the slave supports
burst cycles, it asserts this signal regardless of the
state of the MSBURST# signal line.

MSBURST# Master Burst During a bus cycle, the current bus master asserts
this line as a response to the assertion of SLBURST#.
This informs the addressed slave that the bus master
supports burst cycles.

The subject of burst mode (Type C”) bus cycles is covered in detail in the chap-
ter entitled “EISA CPU and Bus Master Bus Cycles.”

Bus Cycle Definition Signal Group

The EISA specification defines a new set of bus cycle definition signal lines. The
current EISA bus master uses them to inform the currently addressed slave of
the type of bus cycle in progress. Table 5-3 defines the new signals.

Table 5-3. EISA Bus Cycle Definition Lines
Signal Name Full Name Description

M/IO# Memory or I/O During a bus cycle, M/IO# is set high if a memory
address is on the address bus. It is set low if it's an
I/O address.

W/R# Write or Read During a bus cycle, W/R# is set high if a write bus
cycle is in progress and low if a read bus cycle is
in progress.

Chapter 5: Detailed Description of EISA Bus

49

Bus Cycle Timing Signal Group

Under the EISA specification, the signals described in table 5-4 were added to
define the address and data portions of the bus cycle, as well as the end of the
bus cycle.

Table 5-4. EISA Bus Cycle Timing Signals
Signal
Name

Full Name

Description

START# Start phase Every EISA bus cycle consists of two phases: the start
and command phases. The address and the M/IO#
control line are output by the current bus master and
decoded by the target slave during the start phase.
The start phase corresponds to address time and is
therefore one BCLK is duration.

CMD# Command
phase

Every EISA bus cycle consists of two phases: the start
and command phases. The data is transferred during
the command phase. CMD# is asserted at the trailing
edge of the START# signal (trailing edge of Ts) and
stays asserted until the end of the bus cycle. When a
bus cycle has wait states inserted, the CMD# signal
remains asserted for multiple cycles of BCLK.

EXRDY EISA Ready Deasserted by an EISA slave to request the insertion of
wait states in the current bus cycle. It is sampled on
each falling edge of BCLK after the CMD# line is as-
serted. When sampled asserted, the bus cycle will be
terminated at the next rising edge of BCLK.

Lock Signal

The LOCK# signal is asserted by the current bus master to prevent other bus
masters from arbitrating for the use of the bus. This allows the current bus mas-
ter to complete one or more memory accesses prior to surrendering control to
another bus master. The purpose of the bus lock capability is to prevent two
bus masters that share a memory location as a software semaphore from be-
coming de-synchronized with each other.

EISA System Architecture

50

Slave Size Signal Group

When the current bus master addresses an EISA-style slave, the slave asserts
one of these two signals to indicate the data paths it can use and to signal that it
is an EISA-style slave. Table 5-5 describes these two signals.

Table 5-5. The EISA Type/Size Lines
Signal
Name

Full Name

Description

EX32# EISA Slave Size 32 When a 32-bit EISA slave decodes its address, it
asserts EX32# to inform the current bus master
that it can handle 32-bit transfers.

EX16# EISA Slave Size 16 When a 16-bit EISA slave decodes its address, it
asserts EX16# to inform the current bus master
that it can handle 16-bit transfers.

AEN Signal

The following paragraph describes the manner in which the AEN signal is used
under the ISA specification.

When either the master or slave DMA Controller (DMAC) on the system board
becomes bus master, it asserts AEN as a substitute for BALE, indicating that a
valid memory address is present on the address bus. Memory cards then de-
code the address on the address bus. I/O cards also monitor the AEN signal
line and ignore the address on the bus when AEN is asserted. This is necessary
because the DMAC asserts either the IORC# or IOWC# line and I/O devices
think that there is an I/O address on the bus when there really isn’t.

It should be noted that AEN has another, special, usage in the EISA environ-
ment. This additional function is discussed in the chapter entitled “EISA Sys-
tem Configuration.”

EISA Connector Pinouts

The EISA connector is an extended version of the ISA connector. The ISA con-
nector is divided into an 8-bit connector and a 16-bit extension. In figure 5-4,
the upper half of the EISA connector, rows A and B, comprise the 8-bit portion
that is compatible with the IBM PC and XT expansion connector and the 8-bit

Chapter 5: Detailed Description of EISA Bus

51

portion of the connector found in the IBM PC/AT. On the lower half of the
EISA connector in the figure, rows C and D comprise the 16-bit portion that is
compatible with the 16-bit extension to the 8-bit connector found in the IBM
PC/AT. The pins on the EISA connector are arranged in eight rows. Rows A, B,
C, and D comprise the ISA group, while rows E, F, G and H comprise the EISA
group.

EISA System Architecture

52

Figure 5-4. The EISA Connector Pin Assignments

F B E A

H D G C

F1 GND
F2 +5
F3 +5
F4 xxxxxx
F5 xxxxxx
F6 key
F7 xxxxxx
F8 xxxxxx
F9 +12
F10 M/IO#
F11 LOCK#
F12 Reserved
F13 GND
F14 Reserved
F15 BE3#
F16 key
F17 BE2#
F18 BE0#
F19 GND
F20 +5
F21 LA29#
F22 GND
F23 LA26#
F24 LA24#
F25 key
F26 LA16
F27 LA14
F28 +5
F29 +5
F30 GND
F31 LA10

H1 LA8
H2 LA6
H3 LA5
H4 +5
H5 LA2
H6 key
H7 SD16
H8 SD18
H9 GND
H10 SD21
H11 SD23
H12 SD24
H13 GND
H14 SD27
H15 key
H16 SD29
H17 +5
H18 +5
H19 MAKx#

B1 GND
B2 RESDRV
B3 +5
B4 IRQ9
B5 -5
B6 DRQ2
B7 -12
B8 NOWS#
B9 +12
B10 GND
B11 SMWTC#
B12 SMRDC#
B13 IOWC#
B14 IORC#
B15 DAK3#
B16 DRQ3
B17 DAK1#
B18 DRQ1
B19 REFRESH#
B20 BCLK
B21 IRQ7
B22 IRQ6
B23 IRQ5
B24 IRQ4
B25 IRQ3
B26 DAK2#
B27 TC
B28 BALE
B29 +5
B30 OSC
B31 GND

D1 M16#
D2 IO16#
D3 IRQ10
D4 IRQ11
D5 IRQ12
D6 IRQ15
D7 IRQ14
D8 DAK0#
D9 DRQ0
D10 DAK5#
D11 DRQ5
D12 DAK6#
D13 DRQ6
D14 DAK7#
D15 DRQ7
D16 +5
D17 MASTER16#
D18 GND

C1 SBHE#
C2 LA23
C3 LA22
C4 LA21
C5 LA20
C6 LA19
C7 LA18
C8 LA17
C9 MRDC#
C10 MWTC#
C11 SD8
C12 SD9
C13 SD10
C14 SD11
C15 SD12
C16 SD13
C17 SD14
C18 SD15

A1 CHCHK#
A2 SD7
A3 SD6
A4 SD5
A5 SD4
A6 SD3
A7 SD2
A8 SD1
A9 SD0
A10 CHRDY
A11 AENx
A12 SA19
A13 SA18
A14 SA17
A15 SA16
A16 SA15
A17 SA14
A18 SA13
A19 SA12
A20 SA11
A21 SA10
A22 SA9
A23 SA8
A24 SA7
A25 SA6
A26 SA5
A27 SA4
A28 SA3
A29 SA2
A30 SA1
A31 SA0

E1 CMD#
E2 START#
E3 EXRDY
E4 EX32#
E5 GND
E6 key
E7 EX16#
E8 SLBURST#
E9 MSBURST#
E10 W/R#
E11 GND
E12 Reserved
E13 Reserved
E14 Reserved
E15 GND
E16 key
E17 BE1#
E18 LA31#
E19 GND
E20 LA30#
E21 LA28#
E22 LA27#
E23 LA25#
E24 GND
E25 key
E26 LA15
E27 LA13
E28 LA12
E29 LA11
E30 GND
E31 LA9
G1 LA7
G2 GND
G3 LA4
G4 LA3
G5 GND
G6 key
G7 SD17
G8 SD19
G9 SD20
G10 SD22
G11 GND
G12 SD25
G13 SD26
G14 SD28
G15 key
G16 GND
G17 SD30
G18 SD31
G19 MREQx#

Chapter 6: ISA Bus Cycles

53

Chapter 6
The Previous Chapter

The previous chapter provided a functional description of the EISA bus signals.

This Chapter

This chapter provides a brief review of the ISA bus master and DMA bus cy-
cles. For a detailed description of this subject matter, refer to the MindShare
book entitled ISA System Architecture.

The Next Chapter

The next chapter provides a detailed description of the EISA CPU and bus mas-
ter bus cycle types.

Introduction

In order to define extensions to ISA, the writers of the EISA specification had to
first document ISA. The following descriptions of ISA bus cycles are based on
the descriptions found in the EISA specification.

The Bus Clock (BCLK) is supplied to the ISA bus by the system board and de-
fines the time slots (Tstates) that comprise a bus cycle. In order to maintain ISA
compatibility, the maximum clock rate used for bus cycles on the EISA bus is
8.33MHz.

8-bit ISA Slave Device

An 8-Bit ISA slave device interfaces only to the least-significant eight data bus
bits and uses only ISA address bus bits SA[19:0]. This is the simplest and slow-
est of the slave devices and was first developed for use with the IBM PC. These
devices didn't have to be very fast because the PC was based on an Intel 8088
microprocessor running at 4.77MHz.

EISA System Architecture

54

At 4.77MHz, the clock period is 209.64ns and a 0-wait state bus cycle consists of
four clock cycles (838.6ns). In other words, devices with an access time of up to
836ns could be interfaced to the microprocessor without incurring any wait
states. Since the designer must account for the cycle time of DRAMs (typically
double the access time), not the stated access time, this means that DRAMs
with an access time of up to 400ns could be interfaced to the microprocessor
without incurring wait states.

16-bit ISA Slave Device

A 16-bit ISA slave device interfaces to sixteen ISA data bus bits and uses ISA
address bus lines SA[19:0], LA[23:17] and SBHE#. 16-bit devices were devel-
oped for use with the IBM PC-AT. Some of these devices were designed to op-
erate in the original 6MHz version of the IBM PC-AT, while most were
designed to work with the 8MHz version.

The 6MHz PC-AT could interface with a slave device having an access time of
up to approximately 332ns and incur no wait states. This being the case,
DRAMs with an access time of up to approximately 165ns could be accessed
with 0-wait states.

The 8MHz PC-AT could interface with a slave device having an access time of
up to approximately 250ns and incur no wait states. DRAMs with an access
time of up to approximately 125ns could therefore be accessed with 0-wait
states.

Transfers With 8-bit Devices

The ISA bus cycle types utilized to communicate with 8-bit devices include:

• Standard 8-bit device ISA bus cycle – four wait states
• Shortened 8-bit device bus cycle – one, two, or three wait states
• Stretched 8-bit device bus cycle – more than four wait states

The steps that follow describe the sequence of events that take place during an
8-bit bus cycle using the default READY# timing and explains how the default
timing can be either shortened or stretched. Figure 6-1 illustrates an example
bus cycle. The step numbers in the text that follows corresponds to the num-
bered reference points in figure 6-1.

Chapter 6: ISA Bus Cycles

55

1. The address being presented by the current bus master begins to appear on
the LA bus at the start of the address phase. This corresponds to the lead-
ing edge of Ts. If the system board is based on an 80286 or 80386 micro-
processor and address pipelining is asserted, the address may actually be
present on the LA bus prior to the beginning of the bus cycle (as is the case
in this example). 16-bit ISA memory expansion cards can use the portion of
the address on the LA bus to perform an early address decode. 8-bit ISA
expansion cards do not have access to the LA bus and therefore cannot per-
form an early address decode. I/O cards only use the lower 16 address bits
and therefore cannot take advantage of address pipelining.

2. BALE is asserted half-way through the address phase, gating the address
through the system board address latch onto the SA bus.

3. If this is a write bus cycle, the microprocessor's write data is gated onto the
SD bus half-way through the address phase. It remains on the SD bus until
half a BCLK cycle into the next bus cycle (half-way through the address
phase of the next transfer).

4. The trailing-edge of BALE (at the beginning of the first data clock period)
causes the system board address latch to latch the address being output by
the CPU so that it remains static on the SA bus for the remainder of the bus
cycle. The addressed slave device can safely complete the decoding process
during this period.

5. If this is a memory transaction and the M16# signal is sampled deasserted
by the system board bus control logic at the end of the address phase, the
command line (SMRDC# or SMWTC#) is not activated until half-way
through the first data clock period. If this is an I/O transaction, I/O16# will
not be sampled until reference point seven to determine if the currently-
addressed device is an 8 or a 16-bit device.

6. If this is a memory transaction and M16# was sampled deasserted at the
end of the address phase, M16# is again sampled half-way through the first
data clock period. The continued deasserted state of M16# indicates that
the addressed expansion board is an 8-bit device.

7. The appropriate command line (SMRDC#, SMWTC#, IORC# or IOWC#) is
asserted half-way through the first data clock period. During a transfer
with an 8-bit device, the activation of the command line is delayed until the
midpoint of the first data clock period to allow more time for address de-
code before command line activation. The command line then remains as-
serted until the end of the bus cycle (end of last Tc).

8. If this is an I/O transaction, the IO16# signal is sampled deasserted by the
system board bus control logic, indicating that the addressed expansion
board is an 8-bit device.

9. Half-way through the second data clock period and half-way through each
subsequent data clock period, the default ready timer on the system board

EISA System Architecture

56

samples the NOWS# line. If sampled asserted, the CPU READY# line is ac-
tivated and the bus cycle ends on the next rising-edge of BCLK (the end of
the current data clock period). In this way, an ISA board can terminate a
bus cycle earlier than the default number of BCLK cycles (wait states) by
activating NOWS#.

10. This item does not have a corresponding numbered reference point on the
timing diagram. A bus cycle addressing an 8-bit ISA device defaults to six
BCLK cycles (four wait states) if the following two conditions are met:
a) the bus cycle isn't terminated earlier by the assertion of NOWS#.
b) CHRDY is asserted when sampled during the first half of the last data

clock period of the default cycle (first half of the 5th data clock period).
This causes the duration of an ISA bus cycle when accessing an 8-bit device
to default to four wait states (unless shortened by NOWS# to three, four, or
five BCLK cycles, or lengthened by the deassertion of CHRDY. The bus cy-
cle ends at the trailing-edge of the fifth data clock period.

11. During a read bus cycle, the microprocessor reads the data on the data bus
at the trailing-edge of the last data clock period (Tc) of the bus cycle and
the bus cycle is then terminated. The command line (SMRDC#, IORC#, etc.)
is de-activated at that time. When a write bus cycle terminates, the
MWTC#, SMWTC# or IOWC# command line is de-activated. Write data
remains on the SD bus until half-way through the address phase of the next
bus cycle. This accommodates the hold time of the device being written to
and doesn't disturb the device being addressed in the next bus cycle be-
cause the command line for that bus cycle hasn't been activated yet.

Chapter 6: ISA Bus Cycles

57

Figure 6-1. Standard Access to an 8-bit ISA Device

Transfers With 16-bit Devices

The ISA bus cycle types utilized to communicate with 16-bit devices include:

• Standard 16-bit device ISA bus cycle (Memory & I/O) — one wait state
• Shortened 16-bit device ISA bus cycle (Memory only) — zero wait states
• Stretched 16-bit device ISA bus cycle — more than one wait state

125ns125ns 125ns 125ns 125ns 125ns 125ns125ns
TcTc Tc Tc TcTc Ts Ts

Write DataSD0:15

Read
Data

SD0:15

CHRDY

NOWS#

SMRDC#, SMWTC#,
IORC#, IOWC#

M16#
and
IO16#

BALE

SBHE#,
SA0:19

LA17:23

BCLK

1

2

3

4

5

6

7

8

M16# IO16#

EISA System Architecture

58

Standard 16-bit Memory ISA bus Cycle

Figure 6-2 illustrates the timing of a bus cycle on the ISA bus when the current
bus master is communicating with a one wait state 16-bit memory device. Each
of the numbered steps corresponds to the numbered reference points in figure
6-2.

1. If the system board is based on an 80286 or 80386 microprocessor and ad-

dress pipelining is asserted, the address is present on the LA bus prior to
the beginning of the bus cycle. This allows the addressed memory slave to
start decoding the address early which may speed up access.

2. BALE is asserted halfway through the address phase. On the rising-edge of
BALE, 16-bit ISA memory devices can begin to decode the LA lines to de-
termine if the address is for them. When BALE is asserted, the lower por-
tion of the address from the processor (A[19:0]) is transferred through the
system board's address latch onto SA[19:0].

3. The addressed memory board activates M16# as a result of decoding the
LA lines, indicating to the system board's bus control logic that it is capable
of handling a 16-bit transfer without data bus steering being performed by
the steering logic on the system board.

4. If this is a write bus cycle, the microprocessor's output data is gated onto
the SD bus half-way through the address phase and remains on the SD bus
until half a BCLK cycle into the next bus cycle (half-way through the ad-
dress phase of the next bus cycle).

5. At the end of the address phase, the trailing-edge of BALE causes two
events to take place:
a) 16-bit ISA memory devices latch the LA lines so the addressed device is

not deselected when the LA lines are pipelined with the address for the
next transaction before the end of the current bus cycle.

b) the address latch on the system board latches the lower twenty bits of
the address, SA[19:0], so that they remain static on the SA bus for the
remainder of the bus cycle. Slave devices can safely decode the SA ad-
dress on the bus on the falling edge of BALE (if they haven’t done so
already).

6. The system board's bus control logic samples M16# at the end of the ad-
dress phase to determine if the addressed device can take advantage of the
MRDC# or MWTC# command lines being asserted immediately. The ap-
propriate command line (MRDC# or MWTC#) is asserted at the leading-
edge of the first data clock period if M16# is sampled asserted. This com-
mand line remains asserted until the end of the bus cycle (end of last Tc). If
M16# is sampled deasserted, the command line (MRDC# or MWTC#) is ac-
tivated half-way through the first data clock period.

Chapter 6: ISA Bus Cycles

59

7. If M16# wasn’t sampled asserted at the end of the address phase, the sys-
tem board's bus control logic samples M16# a second time at the midpoint
of the first data clock period to determine if data bus steering is necessary.
Since this is an access to a 16-bit device, M16# is sampled asserted and
steering is therefore unnecessary. Also at the midpoint of the first data
clock period, the default ready timer on the system board samples NOWS#.
If sampled asserted, the microprocessor's READY# line is asserted and the
bus cycle terminates at the end of the first data clock period. In this way, a
16-bit ISA memory board can complete a bus cycle in two BCLK cycles (it
should be noted, however, that the default ready timer ignores NOWS#
during I/O bus cycles).

8. During address pipelining, the microprocessor is free to output the address
for the next bus cycle during the current bus cycle. Only the upper portion
of the pipelined address appears on the LA bus at this time because these
bits are buffered but not latched from the microprocessor's address bus.
The remainder of the address doesn’t appear on the SA bus until the mid-
point of the address phase in the next bus cycle.

9. CHRDY is sampled by the default ready timer at the beginning of the sec-
ond data clock period to determine if the device will be ready to complete
the bus cycle at the end of this BCLK cycle. If the device cannot complete
the bus cycle by the end of this BCLK cycle, it should deassert CHRDY. If
CHRDY is sampled deasserted by the default ready timer, it responds by
extending the bus cycle by adding another data clock period. CHRDY is
then checked at the beginning of each additional data clock period until the
device releases CHRDY, indicating that the bus cycle can be completed.

10. An ISA 16-bit memory bus cycle defaults to three BCLK cycles (one wait
state) if the bus cycle isn't terminated earlier by the assertion of NOWS#
and if CHRDY stays asserted throughout the bus cycle. This means that the
length of an ISA bus cycle when accessing a 16-bit memory card defaults to
one wait state unless shortened by NOWS# or lengthened by CHRDY.
READY# is then asserted to the microprocessor, telling it to read the data
from the data bus (if this is a read transaction). When a memory write bus
cycle terminates, the MWTC# command line is desasserted, but the data
remains on the SD bus during the first half of the address phase in the next
bus cycle. This provides hold time for the device being written to and
doesn't affect the device being addressed in the next bus cycle because the
command line hasn't been activated yet.

EISA System Architecture

60

Figure 6-2. Standard Access to a 16-bit ISA Memory Device

125ns125ns 125ns 125ns125ns
Tc Ts Tc Tc

LA17:LA23

SBHE#,
SA0:SA19

BCLK

BALE

MRDC#, MWTC#

M16#

NOWS#

CHRDY

Read Data
SD0:15

Write Data
SD0:15

81

2 5

6

3

7

9

4

10

Chapter 6: ISA Bus Cycles

61

Standard 16-bit I/O ISA bus Cycle

Figure 6-3 illustrates the timing of a bus cycle on the ISA bus when the current
bus master is communicating with a 16-bit I/O device. Each of the numbered
steps corresponds to the numbered reference points in figure 6-3.

1. If the system board is based on an 80286 or 80386 microprocessor and ad-

dress pipelining is active, the address is present on the LA bus prior to the
beginning of the bus cycle. The LA bus has no impact on I/O bus cycles
since A[23:16] always contain zeros during I/O operations.

2. BALE is asserted halfway through the address phase, gating the address
through the system board's address latch onto the SA bus.

3. If this is a write bus cycle, the microprocessor's output data is gated onto
the SD bus half-way through the address phase and remains on the SD bus
until half a BCLK cycle into the next bus cycle (half-way through the ad-
dress phase of the next bus cycle).

4. At the start of the first data clock period, the trailing-edge of BALE causes
the address latch on the system board to latch the lower twenty bits of the
address, SA[19:0], so that it remains static on the SA bus for the remainder
of the bus cycle. Slave devices can safely latch the SA address on the bus on
the falling edge of BALE (if they haven’t done so already).

5. The appropriate command line (IORC# or IOWC#) is also asserted at the
midpoint of the first data clock period. This command line remains as-
serted until the end of the bus cycle (end of last Tc).

6. At the midpoint of the first data clock period, the default ready timer on
the system board ignores the NOWS# line (since an I/O device is being ac-
cessed). This is done to prevent two back-to-back I/O write bus cycles from
accessing the I/O device too quickly. This could violate the I/O write re-
covery time of the I/O device, causing improper operation.

7. During address pipelining, the microprocessor is free to output the address
for the next bus cycle during the current bus cycle. Only the upper portion
of the pipelined address appears at this time on the LA bus because these
bits are buffered but not latched from the microprocessor's address bus.
The remainder of the new address does not appear on the SA bus until the
midpoint of the address phase of the next bus cycle.

8. IO16# is sampled at the midpoint of the second data clock period to deter-
mine if the I/O device is an 8 or 16-bit device. If sampled asserted, data bus
steering is not performed and the bus cycle is terminated on the next rising-
edge of BCLK (the end of the second data clock period). The bus cycle is
not terminated if the CHRDY line is sampled deasserted.

9. CHRDY is sampled by the default ready timer at the end of the second data
clock period to determine if the device is ready to complete the bus cycle. If

EISA System Architecture

62

the device cannot complete the bus cycle by the end of the second BCLK
cycle, it must deassert CHRDY. If CHRDY is sampled deasserted by the de-
fault ready timer, it responds by extending the bus cycle by one data clock
period. CHRDY is then checked at the beginning of each additional data
clock period until the device releases CHRDY to indicate that the bus cycle
can be completed.

10. An ISA 16-bit I/O bus cycle defaults to three BCLK cycles (one wait state)
if CHRDY stays asserted throughout the bus cycle. The bus cycle cannot be
terminated earlier by the assertion of NOWS#. This means that the length
of an ISA bus cycle when accessing a 16-bit I/O card defaults to one wait
state unless lengthened by the deassertion of CHRDY. READY# is then as-
serted to the microprocessor, telling it to read the data from the data bus (if
this is a read transaction). When an I/O write bus cycle terminates, the
IOWC# command line is de-activated, but the data remains on the SD bus
until the end of the first half of the address phase in the next bus cycle. This
accommodates the hold time of the device being written to and doesn't dis-
turb the device being addressed in the next bus cycle because the command
line for that bus cycle hasn't been activated yet.

Chapter 6: ISA Bus Cycles

63

Figure 6-3. Standard Access to 16-bit I/O Device

7

125ns125ns 125ns 125ns125ns
Tc Ts Tc Tc

LA17:LA23

SBHE#,
SA0:SA19

BCLK

BALE

IORC#, IOWC#

IO16#

NOWS#

CHRDY

Read Data
SD0:15

Write Data
SD0:15

8

1

2 4

6

9

3

10

5

EISA System Architecture

64

Zero Wait State ISA Bus Cycle
Accessing 16-bit Device

Figure 6-4 illustrates the timing of a bus cycle on the ISA bus when the current
bus master is communicating with a zero wait state 16-bit device. Note that
only 16-bit memory devices can complete bus cycles at zero wait states. Each of
the numbered steps corresponds to the numbered reference points in figure 6-4.

1. In this example, address pipelining is active and the LA address is present

on the ISA bus prior to the beginning of the bus cycle. This allows the ad-
dressed slave to start decoding the address early. In some cases, this allows
a device to operate at zero wait states.

2. BALE is asserted halfway through the address phase. On the rising-edge of
BALE, 16-bit ISA memory devices can begin to decode the LA lines to de-
termine if the address is for them. When BALE is asserted, the lower por-
tion of the address from the processor is transferred through the system
board's address latch onto the SA bus.

3. The addressed memory board asserts M16# as a result of decoding the LA
lines, indicating to the system board's bus control logic that it is capable of
handling a 16-bit transfer without data bus steering being performed by
the steering logic on the system board.

4. If this is a write bus cycle, the microprocessor's output data is gated onto
the SD bus half-way through the address phase and remains on the SD bus
until half a BCLK cycle into the next bus cycle (half-way through the ad-
dress phase of the next bus cycle).

5. At the end of the address phase, the trailing-edge of BALE causes two
events to take place:

a) 16-bit ISA memory devices latch the LA lines so the addressed de-
vice will not be deselected if the LA lines are pipelined before the end
of the current bus cycle.
b) the address latch on the system board latches the lower twenty bits
of the address, SA[19:0], so that they remain static on the SA bus for
the remainder of the bus cycle. Slave devices can safely decode the SA
address on the bus on the falling edge of BALE (if they haven’t done so
already).

6. The system board's bus control logic samples M16# at the end of the ad-
dress phase to determine if the addressed device can take advantage of the
MRDC# or MWTC# command line being asserted immediately. M16# is
sampled asserted and the appropriate command line (MRDC# or MWTC#)
is asserted at the leading edge of the first data clock period. This command
line remains asserted until the end of the bus cycle (end of Tc).

Chapter 6: ISA Bus Cycles

65

7. If M16# was not sampled asserted the firts time, the system board's bus
control logic samples M16# a second time at the midpoint of the first data
clock period to determine if data bus steering is necessary. Since this is an
access to a 16-bit device, no steering is necessary. Since the M16# line is as-
serted, the default ready timer samples the NOWS# line to determine if the
bus cycle can end in zero wait states. In this example, M16# is sampled as-
serted, forcing the default ready timer to assert the microprocessor's
READY# line before the end of the current data clock period. In this way,
faster ISA memory boards can complete a bus cycle in two rather than
three BCLK cycles.

8. Since the LA lines have already done their job, (the addressed device has
already decoded the LA lines and latched the chip select), the microproces-
sor is free to output the address for the next bus cycle.

9. During a read, the microprocessor latches the contents of the data bus,
thereby ending the bus cycle. During a write, the microprocessor ends the
bus cycle.

EISA System Architecture

66

Figure 6-4. Zero Wait State Access to a 16-bit ISA Memory Device

125ns125ns 125ns 125ns125ns
Tc Ts Tc Ts

LA17:LA23

SBHE#,
SA0:SA19

BCLK

BALE

MRDC#
MWTC#

M16#

NOWS#

CHRDY

Read Data
SD0:15

Write Data
SD0:15

9

7

6

1

3

8

2

4

5

Chapter 6: ISA Bus Cycles

67

ISA DMA Bus Cycles

ISA DMA Introduction

ISA machines use two Intel 8237 DMACs on the system board to implement the
DMA logic. One of the DMACs is connected to the other in a master/slave con-
figuration using channel zero on the master as the cascade input from the slave.
Since each 8237 DMAC provides four DMA channels and one on the master is
used as the cascade input from the slave, the ISA system provides a total of
seven DMA channels. The four inputs to the slave DMAC are designated as
channels zero – three, while the three inputs to the master are designated as
channels five – seven.

In addition, the ISA machine implements the two DMACs in such a fashion
that the three channels on the master (channels five – seven) are capable of per-
forming 16-bit transfers, while the four channels on the slave (channels zero –
three) are capable of performing 8-bit transfers.

Each DMA block data transfer can consist of up to 64K individual transfers.
This limitation is imposed by the 16-bit transfer count register associated with
each channel. This allows each of the channels to transfer up to 64KB of data.
The 16-bit channels are also restricted to 64KB transfers because the DMA logic
cannot increment the memory address across a 64K address boundary.

Each DMA channel can address any memory location within the 16MB range
from 000000h to FFFFFFh. This limitation is imposed by the combination of the
16-bit memory address register associated with each channel in the DMAC and
the 8-bit page register associated with each channel. This pair of registers asso-
ciated with each channel provide a 24-bit memory address capability.

ISA expansion boards can become bus masters if they are connected to one of
the three 16-bit DMA channels on the master DMAC (channels five – seven)
and if the channel is programmed as a cascade channel. The ISA board may
then request the use of the bus through the auspices of the master DMAC on
the system board.

When a DMAC is bus master, it uses its own clock when executing bus cycles.
This clock is referred to as the DMA clock and is 1/2 the BCLK frequency. De-
pending on the system design and the selected processor speed, this will yield
a DMA clock of either 3MHz (6MHz AT), 4MHz (8MHz ISA-compatible ma-
chine), or 4.165MHz (8.33MHz ISA-compatible machine).

EISA System Architecture

68

8237 DMAC Bus Cycle

The 8237 is built around a state machine with seven possible states, each one
DMA clock period wide. Table 6-1 lists the clock period for the three possible
processor speed settings.

Table 6-1. DMA Clock Speeds
Speed Setting DMA Clock Frequency DMA Clock Period

6MHz 3MHz 333.3ns
8MHz 4MHz 250ns

8.33MHz 4.165MHz 240ns

Prior to receiving a DMA Request, the DMAC is in the idle state (Si). When a
DREQ is sensed, the DMAC enters a state where it asserts HOLD (Hold Re-
quest) to the microprocessor and awaits the HLDA (Hold Acknowledge). This
state is called SO (the letter O). The DMAC remains in the SO state until HLDA
is sensed asserted.

The DMAC can then proceed with the DMA transfer. S1, S2, S3 and S4 are the
states used to execute a transfer (of a byte or word) between the requesting I/O
device and system memory. In addition, when accessing a device that is slow to
respond, a DMA transfer cycle can be stretched by de-asserting the DMAC's
READY input until the device is ready to complete the transfer. This causes the
DMAC to insert wait states (Sw), in the bus cycle until READY is asserted
again.

The actions described in table 6-2 take place during states S1 – S4.

Chapter 6: ISA Bus Cycles

69

Table 6-2. ISA DMA State Table
State Actions Taken

S1 During block and demand transfers, the middle byte of the memory ad-
dress, A[15:8], only changes once every 256th transfer. For this reason,
the DMAC only enters the S1 state every 256th transfer in order to up-
date the middle byte of the address that is contained in the external
DMA address latch. Starting at the trailing-edge of S1, the middle byte of
the memory address is output onto data bus pins D[7:0] and is then
latched into the external DMA address latch during S2. The DMAC also
asserts AEN, causing the external DMA address latch to output and act-
ing as an enable for the DMA page register addressing.

S2 During S2, the lower byte (A[7:0]) of the memory address is output di-
rectly onto address bus signals A[7:0]. If S2 was preceded by S1, the
DMAC pulses its ADSTB output, causing the new middle byte of the
address to be latched into the external DMA address latch. If S2 wasn't
preceded by S1, ADSTB isn't pulsed, but the DMAC's AEN output is
asserted. This causes the external DMA address latch to output the pre-
viously latched middle byte and acting as an enable for the DMA page
register addressing. In addition, DAKn# is asserted to tell the I/O device
that the transfer is in progress.

S3 S3 only occurs in a bus cycle if compressed timing hasn't been selected
for this DMA channel. See text below for a discussion of compressed
timing. During S3, the MRDC# or the IORC# line is asserted. If the DMA
channel is programmed for extended writes, the MWTC# or IOWC# line
is also kept asserted during S3.

S4 If the DMA channel was not programmed for extended write, the
MWTC# or IOWC# is asserted at the start of S4. If extended write is se-
lected, the write command line was already asserted at the start of S3.
The actual read/write takes place at the trailing-edge of S4 when both
the read and write command lines are de-asserted by the DMAC. This
completes the transfer of a byte or word between memory and the re-
questing I/O device.

When compressed timing is selected, S3 is eliminated from the DMA transfer
cycle. The only real purpose of S3 is to allow the read command line to be as-
serted for twice the duration that it is when compressed timing is active. Not all
memory and I/O devices will tolerate this abbreviated read command dura-
tion, so it must be used cautiously.

EISA System Architecture

70

When extended write is selected, it causes the write command line to be as-
serted during S3 rather than S4, effectively doubling the duration of the write
command line's assertion period.

It should be obvious that extended write and compressed timing are mutually
exclusive because S3 is essential for extended write and is eliminated when
compressed timing is selected.

Table 6-3 illustrates the transfer speeds possible at the three clock speeds under
the following conditions:

• Compressed timing turned off
• Compressed timing turned on

The table assumes that the transfer is no more than 256 bytes in length. This
was assumed for simplicity's sake. Every 256 transfers the DMAC must insert
an S1 state in the next bus cycle to update the middle byte of the memory ad-
dress (A[15:8]), which must be latched into the external DMA address latch.
This adds one DMA clock period to the duartion of every 257th bus cycle.

Table 6-3. ISA DMA Transfer Rates
 Compressed Off Compressed On

DMA Clock
Frequency

3MHz 4MHz 4.165MHz 3MHz 4MHz 4.165MHz

Transfers per
Second

1M/s 1.3M/s 1.39M/s 1.5M/s 2M/s 2.08M/s

When looking at table 6-3, keep in mind that each bus cycle consists of three
DMA clock cycles with compressed timing turned off and two DMA clock cy-
cles with compressed timing turned on.

Chapter 7: EISA CPU and Bus Master Bus Cycles

71

Chapter 7
The Previous Chapter

The previous chapter provided a review of bus master and DMA bus cycles in
the ISA environment.

This Chapter

This chapter provides a detailed description of the EISA CPU and bus master
bus cycle types.

The Next Chapter

The next chapter provides a detailed description of the EISA DMA bus cycle
types.

Intro to EISA CPU and Bus Master Bus Cycles

In order to maintain complete ISA compatibility, ISA bus cycles are executed
precisely as they are in an ISA machine. These bus cycle types have been de-
scribed in the preceding chapter.

As stated earlier, an Intel x86-compatible processor is capable of executing
seven types of bus cycles:

• Memory data read and memory instruction read. These two types are actu-

ally identical, reducing the total to six bus cycle types.
• Memory data write
• I/O data read
• I/O data write
• Interrupt acknowledge
• Halt or Shutdown (also referred to as the special cycle)

Of these six, only four are ever seen by the expansion boards on the ISA bus:
• Memory Read

EISA System Architecture

72

• Memory Write
• I/O Read
• I/O Write

In an EISA system, the main CPU is capable of performing three variants of
each of these four bus cycle types when communicating with a device over the
EISA bus:

• Standard timing
• Compressed timing (not implemented in current machines)
• Burst timing

EISA bus masters are capable of executing two of these three variants:

• Standard timing
• Burst timing

Standard EISA Bus Cycle

General

The standard EISA bus cycle type is based upon a zero wait state bus cycle.
Unless wait states are inserted by the slave, the transaction completes in two
BCLK periods. Each wait state adds one additional BCLK period. The follow-
ing formula is used to calculate the total transfer time:

 Total Transfer Time = N * (2+Tw) * (1 BCLK period)

 where: Tw = number of wait states per bus cycle
 N = number of bus cycles for overall transfer

As an example, a transfer of 64 doublewords (256 bytes) completes in 15.36 mi-
croseconds for a 32-bit transfer with a 8.33MHz BCLK, while a 16-bit transfer
completes in 30.72 microseconds. This example assumes that no preempts oc-
cur during the transfer and the addressed slave is a zero wait state device.

Chapter 7: EISA CPU and Bus Master Bus Cycles

73

Analysis of EISA Standard Bus Cycle

The timing diagram in figure 7-1 illustrates the timing for three bus cycles, the
first of which has one wait state and the last two are zero wait state bus cycles.
The numbered steps that follow correspond to the reference points in the illus-
tration.

Figure 7-1. The EISA Standard Bus Cycle

BCLK

LA2:LA31
M/IO#

BE0#:BE3#

W/R#

START#

CMD#

EX32#
EX16#

EXRDY

NOWS#

LOCK#

Read
Data

Write
Data

Tc Ts Tc Tc Ts Tc Ts Tc

1

2

3

4

5

6

7

8

3

5

7

8

3

5

7

8

EISA System Architecture

74

1. The first bus cycle after bus grant cannot use address pipelining. After the
first bus cycle, however, the bus master can use address pipelining to out-
put the address and M/IO# early.

2. After the bus master (or CPU) has requested and been granted the bus, the
bus cycle begins on the rising edge of BCLK (the leading-edge of Ts) with
the assertion of the START# signal by the current bus master. START# re-
mains asserted for a full BCLK cycle (all of Ts). At the leading-edge of
START#, the bus master or CPU places the address on the LA bus and byte
enables and also outputs M/IO#. If address pipelining is active, the ad-
dress, byte enables and M/IO# may be placed on the bus during the previ-
ous bus cycle. W/R# is set to the appropriate state at the beginning of the
bus cycle.

3. If a write bus cycle is in progress, the bus master begins to drive the data
onto the appropriate data paths at the midpoint of Ts.

4. The addressed EISA slave decodes the address and asserts either EX16# or
EX32# indicating that it is an EISA device and the data size it's prepared to
handle. I/O devices should also ensure that the AEN signal is deasserted
before decoding an address. AEN is asserted by the DMA controller when
it is placing a valid memory address on the address bus. In order to main-
tain ISA bus master compatibility, an EISA I/O slave should assert IO16#
as well as EX16# or EX32#. EISA slaves that do not need to maintain ISA
bus master compatibility do not need to assert IO16#. The system board
develops M16# from EX16# or EX32# to maintain ISA bus master compati-
bility when communicating with ISA memory slaves. Note that EISA com-
pressed mode is not supported in current implementations of EISA;
however, if implemented the addressed slave should assert NOWS# prior
to the end of Ts.

5. If the addressed slave must latch the address information, it should be
latched on the trailing-edge of START#. The system board's data bus steer-
ing logic samples the EX16# and EX32# lines to determine if steering is nec-
essary. CMD# is asserted by the system board coincidentally with the
deassertion of START# by the bus master. Only the system board drives the
CMD# line. CMD# then remains asserted until the end of the bus cycle. If
support for EISA compressed bus cycles were implemented, the main CPU
logic would sample NOWS# at the trailing-edge of start to determine if the
addressed slave supports EISA compressed mode bus cycles.

6. EXRDY is sampled at the falling edge of every BCLK after CMD# is as-
serted. If sampled deasserted, the bus cycle is extended by one wait state
(an additional Tc). Designers of EISA expansion cards are guaranteed that
the address presented on the LA bus, the byte enable lines and the state of
M/IO# will remain static until the midpoint of the first Tc period of the bus
cycle.

Chapter 7: EISA CPU and Bus Master Bus Cycles

75

7. If EXRDY is sampled asserted at the midpoint of Tc, the bus cycle is termi-
nated at the end of Tc. If the current bus master has another bus cycle to
perform and it uses address pipelining, the address for the next bus cycle is
placed on the LA bus, the byte enable lines and M/IO#.

8. After EXRDY is sampled asserted at the midpoint of Tc, the bus cycle is
terminated at the end of the BCLK cycle. The system board logic deasserts
the CMD# signal. If a read bus cycle is in progress, the bus master reads the
data from the data bus. If a write bus cycle is in progress, the bus master
ends the bus cycle but continues to drive the data onto the data bus until
the midpoint of Ts of the next bus cycle. This is done to ensure that the
hold time for the currently-addressed device is satisfied.

Performance Using EISA Standard Bus Cycle

Assuming that the current bus master and the currently-addressed slave are
both 32-bit devices, the BCLK frequency is 8.33MHz, and the bus master per-
forms a series of 32-bit transfers, the transfer rate would be 16.66MB/second:

 120ns per BCLK cycle x 2 BCLK cycles per transfer
 = 240ns per transfer, divided into one second
 = 4.166M transfers/second, at 4 bytes/transfer
 = 16.66MB/second

If the currently-addressed slave is a 16-bit device, the transfer rate would be
8.33MB/second.

Compressed Bus Cycle

General

To the authors’ knowledge, currently-available EISA chipsets do not support
the EISA compressed bus cycle. For this reason, a detailed analysis of the com-
pressed bus cycle is reserved for a future printing.

Only the main CPU can utilize EISA compressed bus cycles when communicat-
ing with EISA memory or I/O slaves that support compressed mode. Using the
compressed bus cycle, the CPU can complete a transfer every 1.5 BCLK cycles.
The following formula may be used to calculate the overall transfer rate when
transferring a block of data between the main CPU and a slave that supports
compressed bus cycles:

EISA System Architecture

76

 Total Transfer = N * (1.5 BCLK periods)

 where: N = the total number of bus cycles for the overall block
 transfer

As an example, a transfer of 64 doublewords (256 bytes) completes in 11.52
microseconds for a 32-bit transfer with a 8.33MHz BCLK, while a 16-bit trans-
fer completes in 23.04 microseconds. This example assumes that no preempts
occur during the transfer and that the addressed slave is a zero wait state de-
vice.

Using the compressed bus cycle, the CPU presents a new address every 1.5
BCLK periods (instead of two) and the system board shortens the duration of
the CMD# assertion period to one-half of a BCLK period.

If a slave supports compressed bus cycles, it must assert NOWS# prior to the
end of Ts. The slave must not de-assert EXRDY after asserting NOWS#. If the
system board samples NOWS# asserted at the leading-edge of CMD# and the
system board design supports compressed mode, the CMD# pulse width is
shortened to .5 BCLK periods. Since the main CPU logic might not support
compressed mode, or the current bus master might not be the main CPU, the
slave must be prepared to accept CMD# with a duration of one BCLK or
longer.

Performance Using Compressed Bus Cycle

If both the main CPU and the currently-addressed slave support compressed
mode, the BCLK frequency is 8.33MHz, and both the master and the salve are
32-bit devices, the transfer rate for a block data transfer would be
22.22MB/second:

 120ns per BCLK cycle x 1.5 BCLK cycles per transfer
 = 180ns per transfer, divided into one second
 = 5.55M transfers/second, at 4 bytes/transfer
 = 22.22MB/second

If the currently addressed slave is a 16-bit device, the transfer rate would be
11.11MB/second.

Burst Bus Cycle

Chapter 7: EISA CPU and Bus Master Bus Cycles

77

General

A burst transfer is used to transfer blocks of data between the current bus mas-
ter and EISA memory. A burst must consist of all reads or all writes. Reads and
writes may not be mixed within a burst. In other words, the state of the W/R#
bus cycle definition line may not be changed during a burst. After the initial
transfer in a block data transfer, each subsequent EISA Burst bus transfer can
be completed in one BCLK period. The initial transfer requires the time periods
consisting of Ts and Tc to transfer the first data item and for the master and
slave to agree to use burst mode for the subsequent transfers. Unless wait states
are inserted by the slave, each subsequent transfer can then be completed in
one BCLK period. Each wait state adds one additional BCLK period. The fol-
lowing formula is used to calculate the total transfer time:

 Total Transfer Time = (1 + Twi + N) * one BCLK period

 where: Twi = wait states inserted per transfer
 N = number of bus cycles for overall transfer

As an example, a transfer of 64 doublewords (256 bytes) completes in 7.8 mi-
croseconds for a 32-bit transfer with a 8.33MHz BCLK, while a 16-bit transfer
completes in 15.6 microseconds. This example assumes that no preempts occur
during the transfer and the addressed slave is a zero wait state device.

Analysis of EISA Burst Transfer

The timing diagram in figure 7-2 illustrates the timing for five transfers per-
formed using burst mode. The following numbered steps correspond to the
reference points in the illustration.

A 16-bit burst transfer is identical with the exception that EX16# is generated
by the slave instead of EX32#.

1. The current bus master can use address pipelining to output the first ad-

dress and M/IO# early.
2. At the beginning of the first bus cycle in the transfer, the current EISA bus

master activates the START# signal. Assertion of START# indicates that the
bus master has placed a valid address and bus cycle definition on the bus.
The EISA bus controller (EBC) on the system board samples START# as-
serted and recognizes that an EISA bus master, rather than an ISA bus mas-
ter, has initiated a bus cycle. In response, the EBC generates BALE during

EISA System Architecture

78

Ts. This is done in case the EISA bus master is addressing an ISA device. In
addition, the bus master sets the byte enable lines and W/R# to the appro-
priate state. W/R# remains in the selected state (write or read) throughout
the burst transfer.

3. If this is a write transfer, the bus master starts to drive the data onto the
data bus at the midpoint of Ts.

4. At the end of Ts, the current bus master and the system board logic sample
EX16# and EX32#. The assertion of either of these signals indicates that the
currently-addressed device is an EISA device and what data paths it is ca-
pable of using. The bus master deasserts START# and the system board
logic asserts CMD# to indicate that the data phase has begun. If the bus
master is capable of using burst transfers, it samples SLBURST# to deter-
mine if the addressed slave also supports burst. In this example, SLBURST#
is sampled asserted, indicating that the slave supports burst mode.

5. In response to sampling SLBURST# asserted, the bus master asserts
MSBURST# at the midpoint of Tc to indicate to the slave that it also sup-
ports burst mode and will use it for the remaining transfers in the burst.
Also, the bus master samples EXRDY at the midpoint of Tc to determine if
the addressed slave will be ready to complete the first transfer at the end of
the current Tc. In this example, EXRDY is sampled asserted, indicating that
the first transfer can be completed at the end of this Tc period. In response.
the bus master pipelines out the second address starting at the midpoint of
Tc.

6. At the end of the first Tc period, the bus master completes the first transfer
in the burst. If a read burst is in progress, the bus master reads the data
from the appropriate data paths. If a write burst is in progress, the bus
master starts to drive the data for the second transfer onto the appropriate
data paths. The slave samples MSBURST# at the end of each Tc period to
determine if the bus master will use burst mode for the remaining trans-
fers. In this example, MSBURST# is sample asserted, so the burst transfer
continues.

7. At the midpoint of the second Tc, the bus master samples EXRDY to de-
termine if the slave will be ready to complete the second transfer at the end
of this Tc period. In this example, it is sampled asserted, indicating that the
slave will be ready. In response, the bus master begins to drive the third
address out at the midpoint of Tc.

8. At the end of the second Tc, the slave samples MSBURST# again to deter-
mine if the bus master is still bursting. The asserted state indicates that it is.
The bus master completes the second transfer. If a read burst is in progress,
the bus master reads the data from the appropriate data paths. If a write
burst is in progress, the bus master starts to drive the data for the third
transfer onto the appropriate data paths.

Chapter 7: EISA CPU and Bus Master Bus Cycles

79

9. At the midpoint of the third Tc, the bus master samples EXRDY to deter-
mine if the slave will be ready to complete the third transfer at the end of
this Tc period. In this example, EXRDY is sampled deasserted, indicating it
will not be ready. This causes the bus master to insert a wait state of one Tc
duration to stretch the data transfer time for the third transfer. If a read
transfer is in progress, the bus master doesn’t read the third transfer's data
from the bus at the end of this Tc. If a write transfer, the bus master contin-
ues to drive the data for the third transfer onto the data bus during the next
Tc. The bus master pipelines out the address for the fourth transfer, how-
ever, starting at the midpoint of the third Tc period.

10. At the midpoint of the fourth Tc, the bus master samples EXRDY to deter-
mine if the slave will be ready to complete the third transfer at the end of
this Tc period. Since EXRDY is sampled asserted, it will be ready. The bus
master does not pipeline out the address for the fifth transfer yet and con-
tinues to drive the data for the third transfer onto the data bus.

11. The bus master completes the third transfer. If a read burst is in progress,
the bus master reads the data from the appropriate data paths. If a write
burst is in progress, the bus master starts to drive the data for the fourth
transfer onto the appropriate data paths.

12. At the midpoint of the fifth Tc period, the bus master samples EXRDY# to
determine if the slave will be ready to end the fourth transfer at the end of
the current Tc period. Since EXRDY is sampled asserted, the slave will be
ready to end the transfer. The bus master also pipelines out the fifth ad-
dress at the midpoint of Tc.

13. The bus master completes the fourth transfer. If a read burst is in progress,
the bus master reads the data from the appropriate data paths. If a write
burst is in progress, the bus master starts to drive the data for the fifth
transfer onto the appropriate data paths.

14. At the midpoint of the sixth Tc, the bus master samples EXRDY# to deter-
mine if the slave will be ready to end the fifth transfer at the end of the cur-
rent Tc period. Since EXRDY is sampled asserted, the slave will be ready to
end the transfer. Since this is the end of the sample burst, the bus master
de-activates MSBURST# to inform the slave that the last transfer of the
burst is in progress. In this example, the bus master pipelines out the next
address at the midpoint of Tc. In this example, the bus master is addressing
a device other than the memory slave, causing the slave to release
SLBURST#.

15. At the end of the sixth Tc period, the bus master completes the last transfer
of the burst. If a read burst is in progress, the bus master reads the data
from the appropriate data paths. If a write burst is in progress, the bus
master ends the transfer and ceases to drive the data bus. This completes
the example burst transfer.

EISA System Architecture

80

16. The bus cycle following the burst is a standard EISA bus cycle. Since the
bus master is setting W/R# low, it is a read. The bus master samples
EXRDY asserted at the midpoint of Tc and reads the data from the data bus
at the end of Tc and ends the bus cycle.

17. The next bus cycle is also a standard EISA bus cycle. The high on W/R# in-
dicates that a write is in progress. The bus master begins to drive the data
onto the data bus at the midpoint of Ts, samples EXRDY asserted at the
midpoint of Tc, and ends the bus cycle at the end of Tc.

Chapter 7: EISA CPU and Bus Master Bus Cycles

81

Figure 7-2. The EISA Burst Transfer

Ts Tc Tc Tc Tc Tc Tc Ts Tc Ts Tc

BCLK

LA2:LA31
M/IO#

BE0#:BE3#

W/R#

START#

CMD#

EX16#
EX32#

EXRDY

MSBURST#

SLBURST#

Read
Data

Write
Data

171614

151311

1210

9

8

7

6

5

4

3

1

2

Burst Transfer
Bus

Cycle
Bus

Cycle

EISA System Architecture

82

Performance Using Burst Transfers

Once a 32-bit bus master and a 32-bit slave have switched into burst mode, the
second through the last transfers may be completed at the following rate:

 8.33MHz BCLK = 120ns per BCLK cycle
 1 second/120ns per transfer = 8.33M transfers/second
 8.33M transfers/second x 4 bytes per transfer = 33.33MB/second

If the bus master and/or the slave are 16-bit devices, the maximum transfer
rate would be 16.66MB/second.

DRAM Memory Burst Transfers

The addresses output by the bus master when bursting to or from Page Mode
or Static Column (SCRAM) memory must be within a 1024 byte DRAM mem-
ory row (address lines LA[31:10] cannot change during the burst). The ad-
dresses within the burst do not have to be sequential. They only have to be
within the same row. To change DRAM rows, the burst transfer must be termi-
nated by the bus master by setting MSBURST# deasserted on the last cycle in
the row, and the burst sequence is then restarted within a new row.

Downshift Burst Bus Master

A downshift burst bus master is a 32-bit burst bus master that can convert to a
16-bit burst bus master on-the-fly. In other words, if the bus master samples
EX16# and SLBURST# asserted at the end of Ts, it automatically adjusts itself to
only use the lower two data paths during the burst. The bus master is responsi-
ble for copying data to the appropriate data paths during the burst. The system
board data bus steering logic will not take care of data copying. At the start of
the first transfer in the burst, the downshift bus master must indicate its ability
to downshift by setting MASTER16# asserted while START# is asserted (in
other words, for the duration of the address phase).

Chapter 8: EISA DMA

83

Chapter 8
The Previous Chapter

The previous chapter described the bus cycle types that may be run by the
main CPU or an EISA bus master.

This Chapter

This chapter describes the EISA DMA capability. This includes a description of
the EISA DMA bus cycle types and other capabilities of the EISA DMA control-
ler.

The Next Chapter

The next chapter provides an introduction to the bus structure hierarchy in a
typical EISA system. It describes the distribution of functions between the host
bus, EISA bus and the X-bus on the typical EISA system board and the relation-
ship of the functional areas to each other.

DMA Bus Cycle Types

Introduction

The EISA DMA controller incorporates seven DMA channels, each capable of
performing 8, 16 or 32-bit transfers. In addition, each DMA channel may be in-
dividually programmed to utilize one of four types of bus cycles when per-
forming data transfers between an I/O device and memory. The following
sections describe the bus cycle types and other DMA improvements. Detailed
timing diagrams and register-level programming information may be found in
the EISA specification.

EISA System Architecture

84

Compatible DMA Bus Cycle

Description

Each of the seven DMA channels is default-programmed to use ISA-compatible
DMA bus cycles to transfer data between an I/O device and memory. As in an
ISA machine, channels zero – three are default-programmed for 8-bit transfers,
while channels five – seven are default programmed for 16-bit transfers. Any
DMA channel may be re-programmed to perform 8, 16, or 32-bit transfers us-
ing the ISA-compatible bus cycle.

When programmed to use ISA-compatible DMA bus cycles, a transfer is per-
formed every eight BCLK periods. Table 8-1 defines the duration of key sig-
nals during an ISA-compatible DMA bus cycle.

Table 8-1. The DMA ISA-Compatible Bus Cycle
Event Duration

Memory address present 8.0 BCLKs
Duration of data transfer period during a memory to
IO transfer (CMD# active)

4.5 BCLKs

Duration of MRDC# during memory to IO transfer 4.5 BCLKs
Duration of IORC# during I/O to memory transfer 6.5 BCLKs
Duration of IOWC# during a memory to IO transfer 4.0 BCLKs
Duration of MWTC# during I/O to memory transfer 4.0 BCLKs

The duration of the key signals illustrated in table 8-1 defines the amount of
time the memory and I/O device have to recognize that they are being ad-
dressed and to either accept or output data. Comparing this table to the tables
found in the sections on the other three DMA bus cycle types, it is clear that the
amount of time allotted for address decode and data movement becomes in-
creasingly shorter for the faster bus cycle types.

Performance and Compatibility

Table 8-2 defines the data transfer rates when a DMA channel is programmed
to use the ISA-compatible DMA bus cycle to transfer data.

Chapter 8: EISA DMA

85

Table 8-2. ISA-Compatible Transfer Rates
I/O Device Size Transfer Rate

8-bit 1.0416MB/second
16-bit 2.0833MB/second
32-bit 4.1666MB/second

When programmed to use the ISA-compatible DMA bus cycle, a DMA channel
may be used to transfer data between an ISA-compatible I/O device and mem-
ory.

Type A DMA Bus Cycle

Description

When programmed to use Type A DMA bus cycles, a transfer is performed
every six BCLK periods. Table 8-3 defines the duration of key signals during a
Type A DMA bus cycle.

Table 8-3. The DMA Type A Bus Cycle
Event Duration

Memory address present 6.0 BCLKs
Duration of data transfer period during a memory to IO transfer
(CMD# active)

3.5 BCLKs

Duration of IORC# during I/O to memory transfer 4.5 BCLKs
Duration of IOWC# during a memory to IO transfer 3.0 BCLKs

The duration of the key signals illustrated in table 8-3 defines the amount of
time the memory and I/O device have to recognize that they are being ad-
dressed and to either accept or output data. When performing Type A bus cy-
cles, the DMA controller uses W/R# rather than MRDC# or MWTC# to indicate
the type of memory operation,.

Performance and Compatibility

Table 8-4 defines the data transfer rates when a DMA channel is programmed
to use the Type A DMA bus cycle to transfer data.

EISA System Architecture

86

Table 8-4. Type A Transfer Rates
I/O Device Size Transfer Rate

8-bit 1.388MB/second
16-bit 2.777MB/second
32-bit 5.555MB/second

When a DMA channel is programmed to use the Type A DMA bus cycle to
transfer data, the channel may be used to transfer data between fast, EISA
memory and an I/O device designed for Type A transfers. In addition, many
older, ISA I/O devices may also work with a channel programmed for Type A
bus cycles. This is because the Type A transfer does not involve a significant
amount of compression compared to the ISA-compatible bus cycle. Compatibil-
ity may be determined by testing.

Type B DMA Bus Cycle

Description

When programmed to use Type B DMA bus cycles, a transfer is performed
every four BCLK periods. Table 8-5 defines the duration of key signals during a
Type B DMA bus cycle.

Table 8-5. The DMA Type B Bus Cycle
Event Duration

Memory address present 4.0 BCLKs
Duration of data transfer period during a memory to IO transfer
(CMD# active)

2.5 BCLKs

Duration of IORC# during I/O to memory transfer 3.5 BCLKs
Duration of IOWC# during a memory to IO transfer 2.0 BCLKs

The duration of the key signals illustrated in table 8-5 defines the amount of
time the memory and I/O device have to recognize that they are being ad-
dressed and to either accept or output data. When performing Type B bus cy-
cles, the DMA controller uses W/R# rather than MRDC# or MWTC# to indicate
the type of memory operation,.

Chapter 8: EISA DMA

87

Performance and Compatibility

Table 8-6 defines the data transfer rates when a DMA channel is programmed
to use the Type B DMA bus cycle to transfer data.

Table 8-6. Type B Transfer Rates
I/O Device Size Transfer Rate

8-bit 2.083MB/second
16-bit 4.166MB/second
32-bit 8.333MB/second

When a DMA channel is programmed to use the Type B DMA bus cycle to
transfer data, the channel may be used to transfer data between fast, EISA
memory and an I/O device designed for Type B transfers. In addition, some
older, ISA I/O devices may also work with a channel programmed for Type B
bus cycles. Although the Type B transfer involves a significant amount of com-
pression compared to the ISA-compatible bus cycle, some ISA I/O devices may
be fast enough to function correctly at this speed. Compatibility may be deter-
mined by testing.

Type C DMA Bus Cycle

Description

The Type C DMA bus cycle is very similar to the burst bus cycle run by a burst-
ing EISA bus master or the main CPU. When the first bus cycle in a series is ini-
tiated, the DMA controller samples SLBURST# to determine if the addressed
memory supports burst mode. In response to SLBURST# assertion, the control-
ler then activates MSBURST# to indicate bursting will be used to transfer the
data block. As with the other DMA bus cycle types, the controller uses the
combination of DAKn# and either the IORC# or IOWC# line to address the I/O
device. A byte, word or doubleword of data is transferred every BCLK cycle.

Performance and Compatibility

Table 8-7 defines the data transfer rates when a DMA channel is programmed
to use the Type C DMA bus cycle to transfer data.

EISA System Architecture

88

Table 8-7. Type C Transfer Rates
I/O Device Size Transfer Rate

8-bit 8.33MB/second
16-bit 16.66MB/second
32-bit 33.33MB/second

When a DMA channel is programmed to use the Type C DMA bus cycle to
transfer data, the channel may only be used to transfer data between fast, EISA
memory and an I/O device designed for Type C transfers. No ISA I/O devices
will work with a channel programmed for Type C bus cycles.

EISA DMA Transfer Rate Summary

Table 8-8 indicates the maximum data transfer rates achievable for each DMA
bus cycle type, and the expansion devices that are compatible with the bus cy-
cle type.

Table 8-8. EISA DMA Transfer Rates
Transfer

Type
DMA Cycle

Type
Transfer Rate

(MB/sec)

Compatibility

ISA-compatible 8-bit 1.0 all ISA
 16-bit 2.0 all ISA
Type A 8-bit 1.3 most ISA
 16-bit 2.6 most ISA
 32-bit 5.3 EISA-only
Type B 8-bit 2.0 some ISA
 16-bit 4.0 some ISA
 32-bit 8.0 EISA-only
Type C (Burst) 8-bit 8.2 EISA-only
 16-bit 16.5 EISA-only
 32-bit 33.0 EISA-only

Other DMA Enhancements

Addressing Capability

The EISA DMA controller generates full 32-bit addresses, giving it the ability to
transfer data to or from memory throughout the full 4GB address range.

Chapter 8: EISA DMA

89

Preemption

When a DMA channel is programmed for Type A, Type B, or Type C bus cy-
cles, it may be preempted by the CAC if another device requires the use of the
bus. When a channel is programmed for ISA-compatible DMA bus cycles,
however, it cannot be preempted. This means that it can prevent other devices
from receiving the use of the bus on a timely basis if the channel is pro-
grammed for a lengthy block or demand mode transfer. Care should therefore
be exercised.

When the CAC detects another device that requires the use of the bus, it re-
moves the bus grant from the DMA controller. The active DMA channel re-
leases the bus within four microseconds.

Buffer Chaining

The EISA DMA controller's buffer chaining function permits the implementa-
tion of scatter write and gather read operations. A scatter write operation is one
in which a contiguous block of data is read from an I/O device and is written
to two or more areas of memory, or buffers. A gather read operation reads a
stream of data from several blocks of memory, or buffers, and writes it to an
I/O device.

The programmer writes the start address of the first memory buffer to the
DMA channel and sets the channel's transfer count equal to the number of
bytes, words, or doublewords to be transferred to or from the first buffer. The
programmer then enables chaining mode, causing the DMA channel to load the
start memory address and transfer count into another set of channel registers,
known as the current registers. The programmer then writes the start address
of the second memory buffer to the DMA channel and sets the channel's trans-
fer count equal to the number of bytes, words, or doublewords to be trans-
ferred to or from the second buffer.

When the DMA channel has exhausted the first transfer count, the channel
automatically loads the current registers from the secondary registers and gen-
erates either TC or an IRQ13. If the channel was programmed by the main
CPU, IRQ13 is generated. If the channel was programmed by an EISA bus mas-
ter, TC is generated instead. The TC or IRQ13 informs the bus master or micro-
processor that the first buffer transfer has been completed, the second buffer
transfer is in progress and the start address and transfer count for the third

EISA System Architecture

90

buffer transfer (if there is one) should be written to the channel's registers. Up-
dating these registers causes the controller to de-activate TC or IRQ13.

The channel generates a Transfer Complete (TC) when the transfer count is ex-
hausted and the channel's registers have not been reloaded.

Ring Buffers

The EISA DMA controller allows the programmer to implement a ring buffer.
If enabled, the ring buffer reserves a fixed range of memory to be used for a
channel. The start and end address of the ring buffer are defined by the start
memory address and the transfer count. As data is read from the I/O device it
is written into the ring buffer in memory. When the DMA transfer has ex-
hausted its transfer count, the channel automatically reloads the start memory
address and transfer count registers and continues with the DMA transfer from
the I/O device. The new data is written into memory at the start of the ring
buffer, over-writing the older information that has already been read by the
microprocessor. As the programmer reads information that was deposited in
the ring buffer by the channel, the programmer must update the channel's stop
register with the memory address of the next location that has not yet been
read by the microprocessor. The stop register prevents the DMA channel from
over-writing information that the microprocessor hasn't read yet.

Transfer Size

Each DMA channel can be programmed to perform either 8, 16 or 32-bit trans-
fers.

Chapter 9: EISA System Configuration

91

Chapter 9
The Previous Chapter

The previous chapter, “EISA DMA,” described the bus cycle types supported
by the EISA DMA controller. In addition, other EISA DMA enhancements were
also described.

This Chapter

In this chapter, EISA automatic system configuration is discussed. This in-
cludes a description of the slot-specific I/O address space, the EISA product
identifier, and the EISA card control ports. The EISA configuration process and
board description files are also covered.

The Next Chapter

The next chapter begins Part two of the book. In Part two, the Intel EISA chip
set and its relationship to the major system components are discussed.

ISA I/O Address Space Problem

When the original IBM PC and XT were designed, IBM defined the use of the
processor's 64KB I/O address space as shown in table 9-1.

Table 9-1. IBM PC and XT I/O Address Space Usage
I/O Address Range Reserved For

0000h – 00FFh 256 locations set aside for I/O devices integrated onto the
system board.

0100h – 03FFh 768 locations set aside for I/O expansion cards.
0400h – FFFFh Reserved. Do not use.

I/O addresses above 03FFh could not be used due to the inadequate I/O ad-
dress decode performed by many of the early I/O expansion cards. The card's
I/O address decoder inspects A[9:5] to determine which of twenty-four blocks

EISA System Architecture

92

of I/O space is currently being addressed. Each block consists of 32 locations.
Figure 9-1 illustrates these twenty-four address ranges. If the currently-
addressed I/O location is within the block of thirty-two locations assigned to
the I/O expansion card, the card's logic examines address bits A[4:0] to deter-
mine if one of up to thirty-two I/O ports on the addressed expansion card is
being addressed.

Figure 9-1. ISA Expansion I/O Ranges

0100-011F
0120-013F

0140-015F

0160-017F

0180-019F

01A0-01BF

01C0-01DF

01E0-01FF

0200-021F

0220-023F

0240-025F

0260-027F

0280-029F

02A0-02BF

02C0-02DF

02E0-02FF

0300-031F

0320-033F

0340-035F

0360-037F

0380-039F

03A0-03BF

03C0-03DF

03E0-03FF

Chapter 9: EISA System Configuration

93

The I/O address decoders on the expansion cards for the PC, XT and AT only
looked at address bits A[9:5], ignoring bits A[15:10]. The I/O address range as-
signed for usage by expansion cards is 0100h – 03FFh. Bits A9 and A8 would
therefore be either 01b (0100h – 01FFh range), 10b (0200h – 02FFh range), or
11b (0300h – 03FFh range) when an ISA I/O card is being addressed. When the
microprocessor places any address within the expansion I/O address range on
the address bus, an I/O expansion card may respond.

As an example, assume that a machine has two expansion cards installed. One
of them performs an inadequate address decode using just A[9:5] and has eight
registers residing at I/O ports 0100h – 0107h. The other card performs a full
decode using A[15:5] and has four registers residing at I/O ports 0500h –
0503h. Now assume that the microprocessor initiates a one byte I/O read from
I/O port 0500h. The address placed on the bus is shown in table 9-2.

Table 9-2. Example I/O Address
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

The board that occupies the 0500h – 0503h range looks at A[15:5] and deter-
mines that the address is within the 0500h – 051Fh block. It then looks at A[4:0]
and determines that location 0500h is being addressed. Since this is an I/O read
bus cycle, the card places the contents of location 0500h on the lower data path
(this is an even address).

At the same time, the board that occupies the 0100h – 0107h range looks at
A[9:5], a subset of the address seen by the other card's address decoder, and
determines that the address appears to be within the 0100h – 01FFh block. It
then looks at A[4:0] and determines that location 0100h is being addressed.
Since this is an I/O read bus cycle, the card places the contents of location
0100h on the lower data path (this is an even address).

Since both cards are driving a byte of data onto the lower data path, SD[7:0],
data bus contention is occurring. This results in garbage data and possible
hardware damage because two separate current sources are driving the lower
data path. The problem occurs because the card residing in the 0100h – 0107h
range looks at A[9:8] and thinks that this address is within the 0100h – 01FFh
range. If the card were designed to perform a full address decode using
A[15:5], the problem could have been avoided.

Addresses above 03FFh may be used as long as A[9:8] are always 00b, thus en-
suring that the address will not appear to be in the 0100h – 01FFh, 0200h –

EISA System Architecture

94

02FFh, or 0300h – 03FF ranges. Table 9-3 illustrates the usability or unusability
of address ranges above 03FFh.

Table 9-3. Usable and Unusable I/O Address Ranges Above 03FFh
I/O Address Range Usable or Unusable

x000h – x0FFh usable
x100h – x1FFh Unusable. Appears to be 0100h – 01FFh
x200h – x2FFh Unusable. Appears to be 0200h – 02FFh
x300h – x3FFh Unusable. Appears to be 0300h – 03FFh
x400h – x4FFh usable
x500h – x5FFh Unusable. Appears to be 0100h – 01FFh
x600h – x6FFh Unusable. Appears to be 0200h – 02FFh
x700h – x7FFh Unusable. Appears to be 0300h – 03FFh
x800h – x8FFh usable
x900h – x9FFh Unusable. Appears to be 0100h – 01FFh

xA00h – xAFFh Unusable. Appears to be 0200h – 02FFh
xB00h – xBFFh Unusable. Appears to be 0300h – 03FFh
xC00h – xCFFh usable
xD00h – xDFFh Unusable. Appears to be 0100h – 01FFh
xE00h – xEFFh Unusable. Appears to be 0200h – 02FFh
xF00h – xFFFh Unusable. Appears to be 0300h – 03FFh

Note: where x = any hex digit

The next section describes how the EISA specification defines the usage of
these allowable address ranges above 03FFh.

EISA Slot-Specific I/O Address Space

The EISA specification expands the number of I/O locations available to sys-
tem and expansion board designers and also implements automatic configura-
tion of both system and expansion boards.

In addition to the 256 I/O locations available for ISA system board I/O devices
(from 0000h – 00FFh), the EISA system board has 768 additional I/O locations
available for usage by system board I/O devices. Each EISA expansion slot and
each embedded EISA device has 1024 locations of slot-specific I/O address
space available for use (in addition to the 768 bytes of ISA I/O address space
allocated to ISA expansion boards). An embedded device is an EISA I/O de-
vice that is integrated onto the motherboard. In all operational respects, it acts

Chapter 9: EISA System Configuration

95

as if it's installed in an EISA expansion slot. Table 9-4 defines the I/O address
assignment for the EISA system board and the expansion board slots.

Table 9-4. EISA I/O Address Assignment
I/O Address
Range (hex)

Reserved For

Range Reserved For

0000 – 00FF EISA/ISA system board I/O devices System Board
0100 – 03FF ISA expansion cards ISA cards
0400 – 04FF EISA system board I/O System Board
0500 – 07FF alias of ISA range; do not use
0800 – 08FF EISA system board I/O System Board
0900 – 0BFF alias of ISA range; do not use
0C00 – 0CFF EISA system board I/O System Board
0D00 – 0FFF alias of ISA range; do not use
1000 – 10FF Slot 1 I/O EISA slot one
1100 – 13FF alias of ISA range; do not use
1400 – 14FF Slot 1 I/O EISA slot one
1500 – 17FF alias of ISA range; do not use
1800 – 18FF Slot 1 I/O EISA slot one
1900 – 1BFF alias of ISA range; do not use
1C00 – 1CFF Slot 1 I/O EISA slot one
1D00 – 1FFF alias of ISA range; do not use
2000 – 20FF Slot 2 I/O EISA slot two
2100 – 23FF alias of ISA range; do not use
2400 – 24FF Slot 2 I/O EISA slot two
2500 – 27FF alias of ISA range; do not use
2800 – 28FF Slot 2 I/O EISA slot two
2900 – 2BFF alias of ISA range; do not use
2C00 – 2CFF Slot 2 I/O EISA slot two
2D00 – 2FFF alias of ISA range; do not use

repeated for
every X000–
XFFF range

In order to implement the slot-specific I/O address ranges illustrated in table
9-4, the AEN logic on the system board in an ISA system must be modified.
Figure 9-2 illustrates the AEN decoder located on the EISA system board.

In an ISA system, the DMAC's AEN output is connected to the AEN pin on all
ISA expansion slots in parallel. During non-DMA operation, AEN is low, al-
lowing all memory and I/O devices to decode addresses normally. When the

EISA System Architecture

96

DMA controller, or DMAC, is bus master and is placing a memory address on
the bus, it asserts AEN (Address Enable). When I/O cards detect AEN high,
the DMAC is placing a memory address on the bus and the I/O cards ignore
the address. When a memory card detects AEN asserted, it decodes the address
on the bus to determine if the DMAC is addressing it.

In an EISA system, when the DMAC is bus master and is addressing memory,
it asserts AEN, causing the system board AEN decoder (see figure 9 - 2) to as-
sert all of its AEN outputs. Each AEN output is connected to the AEN pin on a
separate connector. In this way, the AEN decoder emulates AEN operation in
an ISA machine. No I/O devices should decode the address.

During non-DMA memory bus cycles, the DMAC’s AEN output is deasserted,
causing the system board AEN decoder to set all of its AEN outputs low. This
permits all memory cards to decode addresses normally.

During non-DMA I/O bus cycles, M/IO# is low, enabling the system board
AEN decoder to use the upper digit of the I/O address, A[15:12], to select
which of its AEN outputs to set low. If either A8 or A9 is set to one, however,
the I/O address is within the range of 768 locations set aside for ISA expansion
I/O devices. The AEN decoder sets all of its AEN outputs low, allowing all of
the installed I/O cards to decode the address. When a card's AEN line is
sensed low, an EISA I/O device that uses slot-specific I/O address space
should examine A8 and A9 to ensure both are zero before decoding A[11:0]. If
either bit is high, the bus master is addressing an ISA I/O device and the EISA
I/O card should not respond.

If A8 and A9 are both zero during an I/O bus cycle, the bus master is address-
ing slot-specific I/O address space. In response, the AEN decoder uses A[15:12]
to determine which one of its AEN outputs to set low. Only the card in the ex-
pansion slot to which the selected AEN line is connected can decode and re-
spond to the I/O address. Upon sensing its AEN line low, the card ensures that
A[9:8] are zero before decoding A[11:0]. Table 9-5 defines the action taken by
the system board's AEN decoder under each set of circumstances.

Chapter 9: EISA System Configuration

97

Table 9-5. AEN Decoder Action Table
DMAC's

AEN

A9

A8

M/IO#

AEN Decoder Action

1 na na na The DMAC drives its AEN output high when it is
bus master and is placing a memory address on the
address bus. The AEN decoder responds by driving
all of its AEN outputs high. This prevents I/O de-
vices from decoding memory addresses.

0 na na 1 A device other than the DMAC is bus master and
has initiated a memory bus cycle. In response, the
AEN decoder sets all of its AEN outputs low. The
low on the AEN outputs allows both memory and
I/O devices to decode addresses.

0 0 0 0 A device other than the DMAC is bus master and
has initiated an I/O bus cycle. Since A[9:8] are both
zero, the bus master is addressing slot-specific I/O
address space. In response, the AEN decoder de-
codes the high digit of the address, A[15:12], to de-
termine which of its AEN outputs to set low. All of
the decoder's other AEN outputs are set high. Only
the I/O device in the expansion slot addressed by
the high digit of the address can decode the I/O
address.

0 0 1 0 The bus master is addressing an ISA I/O expansion
device that resides within the 0100h – 01FFh range.
In response, the AEN decoder sets all of its AEN
outputs low. EISA I/O devices that use slot-specific
I/O address space should not respond when either
A8 or A9 are high.

0 1 0 0 The bus master is addressing an ISA I/O expansion
device that resides within the 0200h – 02FFh range.
In response, the AEN decoder sets all of its AEN
outputs low. EISA I/O devices that use slot-specific
I/O address space should not respond when either
A8 or A9 are high.

0 1 1 0 The bus master is addressing an ISA I/O expansion
device that resides within the 0300h – 03FFh range.
In response, the AEN decoder sets all of its AEN
outputs low. EISA I/O devices that use slot-specific
I/O address space should not respond when either
A8 or A9 are high.

EISA System Architecture

98

Figure 9-2. The System Board's AEN Decoder

EISA Product Identifier

EISA expansion boards, embedded devices and system boards have a four byte
product ID that can be read from I/O port addresses xC80h – xC83h, where x =
0 for the system board or the number of the expansion slot the card is installed
in. For example, the system board's ID can be read from I/O addresses 0C80 –
0C83h and slot one’s ID can be read from 1C80 – 1C83h.

M/IO#

A15

A14

A13

A12

AEN(from DMAC)

AEN0
AEN1
AEN2
AEN3
AEN4
AEN5
AEN6
AEN7
AEN8
AEN9

AEN10
AEN11
AEN12
AEN13
AEN14
AEN15

EISA
System
Board
I/O

Decoder

A8
A9

Chapter 9: EISA System Configuration

99

The first two bytes of the system board ID, read from I/O ports xC80 – xC81,
contain a three character manufacturer's code. The three character manufac-
turer code is uppercase, ASCII alpha chosen by the manufacturer and regis-
tered with the firm that distributes the EISA spec. A compressed version of the
ASCII code, using just the lower five bits of each character, is used. The third
byte and the high-order four bits of the fourth byte are used to specify a prod-
uct identifier consisting of three hex digits. The lower four bits of the fourth
byte is use to specify the product revision number. Table 9-6 illustrates the
format of the product ID bytes read from an expansion board. Table 9-7 illus-
trates the format of the product ID bytes read from an EISA system board.

To verify that an EISA expansion card is installed in a particular card slot:

• Write FFh to I/O port xC80h.
• Read one byte from xC80h.
• If the byte read equals FFh, an EISA card isn't installed in the slot. If the

byte does not equal FFh and bit 7 of the byte read is zero, the card's EISA
product ID can be read from xC80h – xC83h.

Table 9-6. Expansion Board Product ID Format

Location/Bits Specify

xC80, bit 7 not used, must be 0
xC80, bits 6:2 1st compressed ASCII character of Manufacturer's ID
xC80, bits 1:0 upper two bits of 2nd compressed ASCII character of Manufac-

turer's ID
xC81, bits 7:5 lower three bits of 2nd compressed ASCII character of Manufac-

turer's ID
xC81, bits 4:0 3rd compressed ASCII character of Manufacturer's ID
xC82, bits 7:4 upper hex digit of product type
xC82, bits 3:0 middle hex digit of product type
xC83, bits 7:4 lower hex digit of product type
xC83, bits 3:0 single hex digit of product revision number

EISA System Architecture

100

Table 9-7. EISA System Board Product ID Format
Location/Bits Specify

0C80, bit 7 not used, must be 0
0C80, bits 6:2 1st compressed ASCII character of Manufacturer's ID
0C80, bits 1:0 upper two bits of 2nd compressed ASCII character of Manufac-

turer's ID
0C81, bits 7:5 lower three bits of 2nd compressed ASCII character of Manufac-

turer's ID
0C81, bits 4:0 3rd compressed ASCII character of Manufacturer's ID
0C82, bits 7:0 reserved for manufacturer's use
0C83, bits 7:3 reserved for manufacturer's use
0C83, bits 2:0 EISA bus version

EISA Configuration Registers

In an ISA machine, expansion cards are configured by setting DIP switches
and/or jumpers to the desired settings. This allows the user to select options
such as:

• the start address of a device ROM mounted on the card
• the start address of RAM located on the card
• the IRQ line the card utilizes
• the DMA channel the card utilizes
• the I/O address range the card responds to

Setting the switches and/or jumpers allows the user to resolve conflicts be-
tween installed expansion cards. In addition, many ISA system boards have
switches and/or jumpers that are used to configure the system board options.

The EISA specification replaces the switches and/or jumpers with special I/O
locations. Each of these I/O locations can contain up to eight bits that may be
used to select options on the system or expansion card. Each I/O location may
be thought of as a pseudo-DIP switch bank. They are configuration registers.
These special I/O locations reside in the slot-specific I/O address space starting
at xC80h and extending up to xCFFh, a total of 128 locations. The first four of
these I/O locations are reserved for the card ID, while three of the eight bits in
xC84h are reserved for special card functions. The remaining five bits in xC84h
and locations xC85h – xCFFh are available for the implementation of card-
specific configuration registers.

Configuration Bits Defined by EISA Spec

Chapter 9: EISA System Configuration

101

Three of the eight bits available in port xC84h must be implemented on all
EISA expansion cards. Table 9-8 defines these three bits.

Table 9-8. EISA Add-in Card Configuration Bits
Port xC84 Description

bit 0 ENABLE bit. 0 = disable card; 1 = enable card. This bit is
read/writable and is mandatory. Reset clears this bit to zero.

bit 1 IOCHKERR bit. This read-only bit is used to determine if am
EISA card is generating CHCHK#, causing an NMI. This bit is
mandatory if the card can generate CHCHK#. Reset clears this bit
to zero.

bit 2 IOCHKRST bit. This write-only bit is used to reset an expansion
card. Setting it high for a minimum of 500ns causes the card to be
reset. When reset, the ENABLE and IOCHKERR bits are cleared
and all of the card’s logic is reset to an initialized state. If a card
doesn't implement the IOCHKERR bit, the IOCHKRST bit need
not be implemented.

bits 7:3 available for use in configuring the card.

EISA Configuration Process

General

Several elements are necessary in order to implement automatic system con-
figuration in an EISA system. The system must have some way of verifying the
placement and type of EISA boards in the system. This is accomplished by
reading the board ID from each card slot during the POST.

Each EISA card must implement a set of one or more configuration registers to
allow automatic configuration of the card each time the machine is powered
on. The use of the configuration registers is card-specific and the registers are
located in the I/O address range xC84h – xCFFh.

The manufacturer of the system board and each of the EISA and, where possi-
ble, ISA boards should supply a configuration file for each card that describes
the programmable options available on the card. Programmable options might
include interrupt request lines and DMA channels to be used, size and start
address of required memory space and the start address of required I/O space.
The configuration file must identify the options within each functional area —
for example, the choice of interrupt request lines or DMA channels the card can

EISA System Architecture

102

be configured to use. For each possible choice, the file must describe the respec-
tive bit settings and I/O port to be written in order to choose the selected op-
tion. For ISA cards, the configuration file describes the available options and
the respective DIP switch and/or jumper settings necessary to implement each
selected option.

The system manufacturer must provide a configuration program that is capable
of examining all of the selectable options available for each of the installed
cards and of producing a conflict-free scenario. In other words, it must be ca-
pable of choosing a set of options for each card where none of the selected op-
tions conflict with the option settings chosen for any other installed ISA or
EISA card. The configuration program then stores the configuration informa-
tion in non-volatile memory and also makes a backup copy on diskette. The
diskette may then be distributed within an organization to ensure that all ma-
chines are configured the same way.

The EISA system board must incorporate at least 340 bytes of non-volatile
memory for each expansion card slot and an additional 340 bytes for the sys-
tem board configuration information. The block of non-volatile memory associ-
ated with a card slot is used to store card-specific configuration information
such as the card ID and the address of and data to be written to the card's con-
figuration registers each time the machine is powered on.

The system manufacturer must supply ROM-based BIOS routines that allow
configuration information to be written to and read from configuration mem-
ory (non-volatile memory).

Configuration File Naming

The name of a card's configuration file consists of an exclamation point fol-
lowed by the manusfacturer ID, product ID and the file extension of CFG. The
following are some examples of legal configuration file names:

• !DEL1233.CFG
• !CPQ5672.CFG
• !IBM9AB1.CFG

The configuration program includes a method for handling cards with dupli-
cate product IDs. As the configuration program copies the configuration file for
each card to the configuration diskette, it checks for duplicate product IDs.
When one is found, the first character of the filename is changed from an ex-

Chapter 9: EISA System Configuration

103

clamation point to the number one. If a third configuration file with the same
product ID is found, its name is altered by changing the first character from an
exclamation point to the number two, and so on. As an example, assume that
the machine being configured has three boards with the same product ID. As
the three configuration files are copied to the configuration diskette, they are
renamed as follows:

• first file name is left as !DEL1231.CFG
• second file name is altered to 1DEL1231.CFG
• third file name is altered to 2DEL1231.CFG

The card manufacturer should always ensure that the card's configuration file
name and product ID are changed to reflect the actual revision number of the
card.

Configuration Procedure

The example sequence that follows provides a guide to the configuration of an
EISA system.

1. With the machine powered off, insert the configuration diskette in floppy

drive A.
2. Install all EISA expansion cards. Do not install ISA cards yet.
3. Power on the machine. During the POST, the machine attempts to read the

product ID from each expansion slot in order to determine which slots
have EISA cards installed.

4. When the POST is complete, the unit boots from the configuration diskette
and executes the configuration program.

5. Use the “copy configuration file” command on the configuration program's
menu to copy each of the configuration files for the installed EISA cards
and the yet-to-be-installed ISA cards onto the configuration diskette. Dur-
ing the copy process, the configuration program automatically detects and
renames the configuration files for cards with duplicate product IDs.

6. Select “automatic system configuration” from the menu. The configuration
program automatically generates a conflict-free scenario for both the EISA
and ISA cards. The configuration program stores the EISA card product
IDs, I/O configuration port addresses and the data to be written to each
configuration port in non-volatile memory. Information about the ISA
cards is also stored in the slot-specific non-volatile memory areas reserved
for the slots the ISA cards are to be installed in.

EISA System Architecture

104

7. Using the prompts generated by the configuration program, the user sets
the DIP switches and/or jumpers on the ISA cards to the indicated posi-
tions.

8. Print a hardcopy of the expansion slots the ISA cards must be installed in
and any command lines that may need to be entered into the operating sys-
tem's startup files (such as the CONFIG.SYS and AUTOEXEC.BAT files in
an MS-DOS environment).

9. Turn the system off and install the ISA cards in the expansion slots indi-
cated by the configuration program. Refer to the hardcopy.

10. Remove the configuration program diskette from drive A: and power up
the system again. The system now boots from the hard disk.

11. Using a text editor, incorporate command lines into the operating system's
startup files that were indicated by the configuration program. Refer to the
hardcopy.

12. Reboot the system so the commands in the operating system's startup files
are executed.

Configuration File Macro Language

The option information contained within a configuration file is written in a
high-order macro language developed by the EISA consortium specifically for
this purpose. The syntax of this language is described in detail in the EISA
specification. It would be counter-productive to duplicate the entire language
definition within this document. The following section provides an annotated
listing of a sample configuration file.

Example Configuration File

The following example configuration file demonstrates many, but not all, of the
elements found in the typical configuration file. The text following the example
explains each element.

Chapter 9: EISA System Configuration

105

BOARD1

ID = "TLC0011"
NAME = "XYZ Corp. Ethernet Board - Rev. 5"
MFR = "XYZ Corp."
CATEGORY = "NET"
SLOT = EISA
LENGTH = 330
READID=YES

IOPORT(1) = 0zC94h2

INITVAL = 0000xxxx
IOPORT(2) = 0zC98h3

INITVAL = xxxxxxxxxxxxxxrr
IOPORT(3) = 0zC9Ah4

INITVAL = xxxxxxrr
IOPORT(4) = 0zC9Bh5

INITVAL = rrrrrxxx
IOPORT(5) = 0zC85h6

INITVAL = xxxxxxxx
IOPORT(6) = 0zC86h7

INITVAL = 0rrxxxxx
IOPORT(7) = 0zC86h8

INITVAL = 1rrxxxxx

SOFTWARE(1) = "TLCDRVR.EXE - \n If using MS-
 DOS, place the following command line in
 AUTOEXEC.BAT:\n\t\tTLCDRVR /S=n /A =n\n
 Use the following values with the /S and
 /A parameters:" 9

EISA System Architecture

106

; Function description starts here
GROUP = "Ethernet Network Interface"10

TYPE = "NET,ETH"11

FUNCTION = "Network Interface Location"12

CHOICE = "Set Up as Node 0"13

SUBTYPE = "LAN0"
FREE

INIT = SOFTWARE(1) = "/S = 1 /A = 0"
INIT = IOPORT(5) = LOC (5-2) 0000

CHOICE = "Set up as Node 1"
SUBTYPE = "LAN1"
FREE

INIT = SOFTWARE(1) = "/S = 0 /A = 1"
INIT = IOPORT(5) = LOC (5-2) 0001

CHOICE = "Set Up as Node 2"
SUBTYPE = "LAN2"
FREE

INIT = SOFTWARE(1) = "/S = 0 /A = 2"
INIT = IOPORT(5) = LOC (5-2) 0010

 .
 .
 .

CHOICE = "Set Up as Node 15"
SUBTYPE = "LAN15"
FREE

INIT = SOFTWARE(1) = "/S = 0 /A = 15"
INIT = IOPORT(5) = LOC (5-2) 1111

Chapter 9: EISA System Configuration

107

FUNCTION = "DMA and Interrupt assignment"14

CHOICE = "System Resources"15

;DMA channel uses Type “C” bus cycle16

LINK17

DMA = 5|718

SHARE = no
SIZE = dword
TIMING = TYPEC
INIT = IOPORT(5) LOC (0) 0|1

;interrupt is level-sensitive, shareable
LINK

IRQ = 2|519

SHARE = yes
TRIGGER = level
INIT = IOPORT(5) LOC (1) 0|1

COMBINE20

MEMORY = 2K21

ADDRESS = 0C0000h|0D0000h|0E0000h
MEMTYPE = oth
WRITABLE = no
SHARE = no
SIZE = byte
CACHE = yes
DECODE = 32
INIT=IOPORT(6)LOC(3-0) 1100|1101|1110

EISA System Architecture

108

;network board local RAM
FUNCTION = "Local RAM initialization"22

CHOICE = "64K RAM"23

SUBTYPE = "64K"
COMBINE

MEMORY = "64K"
ADDRESS= 100000h-1F0000h STEP = 64K
WRITABLE = yes
MEMTYPE = oth
SIZE = dword
CACHE = no
INIT=IOPORT(7)LOC(4 3 2 1 0)00000-01111

CHOICE = "128K RAM"24

SUBTYPE = "128K"
COMBINE

MEMORY = "128K"
ADDRESS = 100000h-1F0000h STEP = 64K
WRITABLE = yes
MEMTYPE = oth
SIZE = dword
CACHE = no
INIT=IOPORT(7)LOC(4 3 2 1 0)10000-11111

ENDGROUP25

Chapter 9: EISA System Configuration

109

;serial port section
FUNCTION = "Serial Port"26

TYPE = "COM,ASY"27

CHOICE = "COM1"28

SUBTYPE = "COM1"
FREE
IRQ = 4

SHARE = yes
TRIGGER = level

PORT = 3F8h-3FFh
SHARE = no
SIZE = byte

INIT = IOPORT(1) LOC (3-0) 0000
INIT=IOPORT(2)LOC (15-2) 00000011111100
INIT = IOPORT(3) LOC (7-2) 110000
INIT = IOPORT(4) LOC (2-0) 010

CHOICE = "COM2"29

SUBTYPE = "COM2"
FREE
IRQ = 3

SHARE = yes
TRIGGER = level

PORT = 2F8h-2FFh
SHARE = no
SIZE = byte

INIT = IOPORT(1) LOC (3-0) 0000
INIT = IOPORT(2)LOC (15-2) 00000011111100
INIT = IOPORT(3) LOC (7-2) 110000
INIT = IOPORT(4) LOC (2-0) 000

CHOICE = "Serial Port Disable"30

SUBTYPE = "Port Disable"
DISABLE = yes
FREE

INIT = IOPORT(4) LOC (0) 0

EISA System Architecture

110

Example File Explanation

Each of the numbered sections that follow provides an explanation of the sec-
tion of the example configuration file with the corresponding subscripted
number.

1. Every configuration file must include the board identification block. The

BOARD statement identifies the beginning of the block. The ID statement
contains the product ID consisting of the three character manufacturer's
code, the three digit board type and the one digit revision number. The
NAME field contains text that describes the board. The MFR field contains
the full name of the board manufacturer. The CATEGORY field contains a
three character designator that identifies the basic board type. Table 9-9
provides a listing of the available categories. The SLOT statement identifies
the type of slot the board requires. If the SLOT statement is missing, the
configuration program assumes that the board requires a 16-bit ISA slot.
The LENGTH statement specifies the length of the board in millimeters.
The READID statement identifies whether the board has a product ID that
can be read from I/O ports xC80h – xC83h.

2. The IOPORT(1) statement associates the variable name IOPORT(1) with
I/O port address xC94h. The INITVAL statement identifies the source of
each of the bits within the specified I/O port. In this example statement,
the xxxx indicates that bits 3:0 are supplied by the configuration program
based on the configuration chosen. The 0000 in bits 7:4 indicates that these
bits are always zero.

3. The IOPORT(2) statement associates the variable name IOPORT(2) with
I/O port addresses xC98h and xC99h. The INITVAL statement identifies
the source of each of the bits within the specified I/O port. In this example
statement, the bit field is sixteen bits wide, indicating that this is a 16-bit
I/O port. Bits 1:0 have an “rr” designation, meaning that they are read-
only bits. The x's in bits 15:2 indicate that they are supplied by the configu-
ration program based on the configuration chosen.

4. The IOPORT(3) statement associates the variable name IOPORT(3) with
I/O port address xC9Ah. The INITVAL statement identifies the source of
each of the bits within the specified I/O port. In this example statement,
the bit field is eight bits wide, indicating that this is an 8-bit I/O port. Bits
1:0 have an “rr” designation, meaning that they are read-only bits. The x's
in bits 7:2 indicate that they are supplied by the configuration program
based on the configuration chosen.

5. The IOPORT(4) statement associates the variable name IOPORT(4) with
I/O port address xC9Bh. The INITVAL statement identifies the source of
each of the bits within the specified I/O port. In this example statement,

Chapter 9: EISA System Configuration

111

the bit field is eight bits wide, indicating that this is an 8-bit I/O port. Bits
7:3 have an “r” designation, meaning that they are read-only bits. The x's in
bits 2:0 indicate that they are supplied by the configuration program based
on the configuration chosen.

6. The IOPORT(5) statement associates the variable name IOPORT(5) with
I/O port address xC85h. The INITVAL statement identifies the source of
each of the bits within the specified I/O port. In this example statement,
the bit field is eight bits wide, indicating that this is an 8-bit I/O port. The
x's in bits 7:0 indicate that they are supplied by the configuration program
based on the configuration chosen.

7. The IOPORT(6) statement associates the variable name IOPORT(6) with
I/O port address xC86h. The INITVAL statement identifies the source of
each of the bits within the specified I/O port. In this example statement,
the bit field is eight bits wide, indicating that this is an 8-bit I/O port. Bit
seven is always zero. Bits 6:5 have an “r” designation, meaning that they
are read-only bits. The x's in bits 4:0 indicate that they are supplied by the
configuration program based on the configuration chosen.

8. The IOPORT(7) statement associates the variable name IOPORT(7) with
I/O port address xC86h. The INITVAL statement identifies the source of
each of the bits within the specified I/O port. In this example statement,
the bit field is eight bits wide, indicating that this is an 8-bit I/O port. Bit
seven is always one. Bits 6:5 have an “r” designation, meaning that they are
read-only bits. The x's in bits 4:0 indicate that they are supplied by the con-
figuration program based on the configuration chosen.

9. The SOFTWARE(1) statement provides the end user with instructions re-
garding a customized command line to be written into operating system
startup files like AUTOEXEC.BAT and/or CONFIG.SYS. Customization of
the command line is based on selections made during the configuration
process. The text located within the quotes will be displayed for the end
user and may be printed out as well. The “\n” will cause the configuration
program to output a “new line” to the screen, while the “\t” represents a
tab.

10. The GROUP statement block begins with the GROUP statement and ends
with the ENDGROUP statement. The option choices for board functions
that may be logically grouped are placed within the GROUP block. In this
example, the network card being described contains both a network inter-
face and a serial port. All of the card's functions related to the network in-
terface are grouped together.

11. The TYPE and SUBTYPE identifiers are used by device drivers to identify,
set up and operate a device that is compatible with the device driver. In the
example, NET indicates it is a network interface and ETH indicates that it is
an Ethernet network interface.

EISA System Architecture

112

12. The FUNCTION statement provides the name of the functional area to be
configured. In this example, it is the location of the network interface on
the network.

13. The statements within a CHOICE block define the option settings for a
given choice. The first CHOICE block specifies the most desired choice,
with subsequent choices in order to preference. In the example, the first
CHOICE block defines the settings if the network interface board is to be
configured as node 0 on the network. If this choice is made, the SUBTYPE
field is set to “LAN0” to supply additional information to the card's soft-
ware driver. The elements with a free-form group, defined by the FREE
statement, have no functional relationship to each other. The first INIT
statement declares that the text string “/S = 1 /A = 0” will be appended to
the text in the SOFTWARE(1) variable if the first choice is selected. In addi-
tion, the second INIT statement declares that bits 5:2 of the I/O port speci-
fied in the variable IOPORT(5), port xC85h, must be set to zero to configure
the network interface card as node 0 on the network.

14. The next functional area to be configured is the assignment of the interrupt
request line, DMA channel and the start address of the card's device ROM.

15. There is only one CHOICE block within this functional area.
16. This is a comment line.
17. The elements of a LINK group have a direct relationship to each other. The

first LINK block contains statement relating to the DMA channel selection
and programming. The second LINK block contains statements relating to
the selection and programming of an interrupt request line.

18. The DMA statement offers a choice of DMA channel five or seven. The ver-
tical line between the two numbers is the logical “or” symbol. The SHARE
statement declares the DMA channel as not shareable. The SIZE statement
declares the DMA channel as handling doubleword, or 32-bit, transfers.
The TIMING statement declares that the selected DMA channel must be
programmed to use Type “C” bus cycles. The INIT statement declares that
bit zero of IOPORT(5), port xC85h, must be set to zero to select DMA chan-
nel five or to one to select DMA channel seven.

19. The second LINK block contains statements relating to the selection and
programming of an interrupt request line. It allows a choice of IRQ two or
five, the selected IRQ input must be programmed as a shareable, level-
sensitive interrupt request line, and IOPORT(5), port xC85h, bit one must
be set to zero to select IRQ2, or to one to select IRQ5.

20. The elements of a combined group have an indirect relationship to each
other.

21. The MEMORY statement identifies the start of a memory description block.
This block describes a block of memory 2K in size. The ADDRESS state-
ment provides a choice of one of three possible start addresses for the

Chapter 9: EISA System Configuration

113

memory block. The three possible start addresses are 0C0000h, 0D0000h, or
0E0000h. The MEMTYPE field identifies whether the memory block is
normal system memory (SYS), expanded memory (EXP), a LIM page frame
(VIR), or memory space used for memory-mapped I/O or bank-switched
memory (OTH for other). OTH is primarily intended for memory-mapped
I/O devices such as network cards. This memory block is declared not wri-
table (WRITABLE = no), meaning it is ROM memory. The memory block
may not be shared with another device (SHARE = no). It is 8-bit memory
(SIZE = byte). It is safe to cache information from this area of memory
(CACHE = yes). All 32 address lines are decoded by the board (DECODE =
32). To implement the selected memory start address, IOPORT(6), port
xC86h, bits 3:0, must be set to Ch (1100), Dh (1101), or Eh(1110).

22. The next functional area to be configured is the RAM memory residing on
the network interface card.

23. The first CHOICE block defines the configuration if the network interface
card has 64K of RAM memory installed. Its SUBTYPE is declared as 64K
for the use of the network interface driver. If this choice is made, the
MEMORY block statement declares the memory as 64K in size. Its start ad-
dress may begin on any one of sixteen possible address boundaries within
the 1M range between 100000h and 1FFFFFh and the must start at an ad-
dress divisible by 64K. It is declared as writable, meaning it is RAM mem-
ory that can be both written to and read from. It is declared with a
MEMTYPE of OTH. It is a 32-bit device and the selected memory address
range is declared as non-cacheable. If this choice is made, IOPORT(7), port
xC86h, bits 4:0 must be set to a value between 0 0000 and 0 1111, depend-
ing on the start address selected.

24. The statements within the second CHOICE block will be executed if the
network interface card has 128K of RAM memory installed. The setup is
the same as that with 64K of RAM installed except for the SUBTYPE decla-
ration and the value to be written to IOPORT(7), port xC86h. If this choice
is made, IOPORT(7), port xC86h, bits 4:0 must be set to a value between 1
0000 and 1 1111, depending on the start address selected.

25. The ENDGROUP statement marks the end of the network interface portion
of the configuration information. The remaining configuration information
relates to the serial port.

26. The next functional area to be configured is the serial port logic residing on
the network interface card.

27. For the benefit of the device driver software, the SUBTYPE is declared as
“COM,ASY” meaning asynchronous communications port.

28. There are three possible configuration choices for the serial port: COM1,
COM2, or disabled. For the COM1 choice, the following selections are
made: the serial port will use IRQ4 and it will be programmed as a share-

EISA System Architecture

114

able, level-triggered IRQ input; it will respond to port addresses 03F8h –
03FFh; and its I/O ports may not be shared by another device and they are
8-bit ports. Bits 3:0 of IOPORT(1), port xC94h, will be set to zeros. Bits 1:0
and 15:8 of IOPORT(2), ports xC98h and xC99h, will be set to zeros, while
bits 7:2 will be set to ones. Bits 5:2 of IOPORT(3), port xC9Ah, will be set to
zeros, while bits 7:6 will be set to ones. Bits 0 and 2 of IOPORT(4), port
xC9Bh, will be set to zero, while bit 1 is set to one.

29. For the COM2 choice, the selections made are the same as COM1, except:
the serial port will use IRQ3; and it will respond to port addresses 02F8h –
02FFh. Bits 2:0 of IOPORT(4), port xC9Bh, will be set to zero.

30. If the serial port is to be disabled, bit 0 of IOPORT(4), port xC9Bh, is set to
zero and the SUBTYPE is set to disabled for the driver.

Table 9-9. Category List

Category Name Description

COM communications device
KEY keyboard

MEM memory board
MFC multifunction board
MSD mass storage device
NET network board
NPX numeric coprocessor
OSE operating system environment
OTH other
PAR parallel port
PTR pointing device
SYS system board
VID video board

PART TWO

THE INTEL 82350DT
CHIP SET

Chapter 10: EISA System Buses

117

Chapter 10
The Previous Chapter

In the previous chapter, automatic system configuration was described.

This Chapter

This chapter describes the major buses found in virtually all EISA systems. This
includes the host, EISA, ISA and X-buses.

The Next Chapter

The next chapter, “Bridge, Translator, Pathfinder, Toolbox,” describes the ma-
jor functions provided by the EISA chipset.

Introduction

Refer to figure 10-1. EISA systems may incorporate a number of buses such as:

• Host bus
• EISA bus
• X-bus
• Local bus

EISA System Architecture

118

Figure 10-1. Buses Typically Found in EISA Systems

Host Bus

Virtually all EISA systems are shipped with an integral CPU. This CPU may be
integrated onto the system board itself or may reside on a special, CPU daugh-
ter card that installs in a special connector on the system board. This is referred
to as the host CPU. The host CPU's local address, data and control buses com-
prise the host bus. Typically, devices that the CPU requires fast access to would
be placed on the host bus. These would include devices like:

• system board RAM memory
• numeric coprocessor
• local cache controller and cache memory
• non-cacheable access, or NCA, logic

X-Bus Buffers

Local Bus CPU Cache

EISA Bus

Host Bus

EISA Bus Buffers

System
Memory

X-Bus

Chapter 10: EISA System Buses

119

• advanced video controller
• other I/O devices requiring fast access to the CPU

If the host CPU resides on a daughter card, the CPU's local cache controller,
cache memory, NCA logic and numeric coprocessor also typically reside on the
CPU card.

EISA/ISA Bus

Since the ISA bus is a subset of the EISA bus, any reference to the EISA bus in
this book is a reference to the ISA bus and its EISA extensions. The ISA bus is
discussed in detail in the MindShare book entitled ISA System Architecture. The
EISA extensions to the ISA bus are described earlier in this book.

X-Bus

The ability of the microprocessor to drive data onto the data bus and the ad-
dress onto the address bus is limited by the power of its output drivers. When
the microprocessor is writing data to any external memory or I/O device, the
data is driven out onto the processor's local data bus. If the local data bus is
fanned out and connected to too many external devices, the drive capability of
the microprocessor's output drivers may be exceeded and the data driven onto
the data bus becomes corrupted. The local data bus is connected to the external
data bus transceivers pictured in figure 10-2.

During a write operation, the bus control logic allows the appropriate data bus
transceiver to pass data from the processor's local data bus onto the system
data (SD) bus. The output drive capability of the transceiver is substantially
greater than that of the processor's internal drivers, allowing the SD bus to fan
out to more places. The SD bus is connected to all of the ISA expansion slots. In
addition, many devices that may be written to are physically located on the
system board itself. However, it would exceed the output drive capability of
the data bus transceivers to fan out the SD bus to all of the devices integrated
onto the system board as well as to all of the expansion slots.

To solve this problem, the SD bus is passed through another transceiver onto
the XD, or extended data, bus. The X data bus transceiver redrives the data
onto the XD bus during writes, permitting the data to be fanned out the devices
residing on the XD bus. The devices integrated onto the system board are con-
nected to the X data bus.

EISA System Architecture

120

Figure 10-2. The X-Bus

CPU

Data
Bus
Xcvr

Data
Bus
Xcvr

LA
Bus

Buffer

Address
Latch

Bus
Control

logic

XD
Bus Buffer

XA
Bus Buffer

Hi/Lo Copier

A1:A23

D8:D15

D0:D7

LA17:LA23

SA1:SA19

SD8:SD15

SD0:SD7

A0

BHE#

SA0

SBHE#

XD0:XD7

XD8:15

XA0

XA1:XA16

XA17:XA23

Expansion
Slots

XBHE#

Chapter 10: EISA System Buses

121

When a write is in progress, the bus control logic sets up the data bus trans-
ceivers to pass data from the microprocessor's local data bus onto the SD bus
and also enables the X data bus transceiver to pass data from the SD bus to the
XD bus. When a read is in progress, the bus control logic sets up the X data bus
transceiver to pass data from the XD to the SD bus and sets up the data bus
transceivers to pass data from the SD to the microprocessor's local data bus. It
should be noted that the XD bus is just a buffered version of the ISA bus's SD
bus.

The same fanout problem exists on the processor's address bus. The address
generated by the microprocessor is driven onto the processor's local address
bus. In an ISA machine, it then passes through the LA bus buffer, the address
latch and the bus control logic onto the ISA address bus. The ISA address bus
consists of LA[23:17], SA[19:0] and SBHE#. The redrive capability of the LA bus
buffer, the address latch and the bus control logic permits the address informa-
tion to be fanned out to all of the ISA expansion slots. In addition to the ISA
devices installed in expansion slots, however, the address information must
also be fanned out to the addressable devices that are integrated onto the sys-
tem board. This would exceed the drive capability of the LA bus buffer, the
address latch and the bus control logic. To allow additional fanout, the ISA ad-
dress information is passed through a buffer onto the XA bus. The buffer's re-
drive capability permits the XA address to be fanned out to all the devices
integrated onto the system board. In other words, the devices integrated onto
the system board are connected to the XA and XD buses, a buffered version of
the ISA address bus.

EISA System Architecture

122

Chapter 11: Bridge, Translator, Pathfinder, Toolbox

123

Chapter 11
The Previous Chapter

The previous chapter introduced the buses around which all EISA systems are
constructed. They are the host, EISA, ISA and X buses.

This Chapter

This chapter provides a description of the major functions performed by the
EISA chipset. It acts as the bridge between the host and EISA buses. It trans-
lates addresses and other bus cycle information into a form understood by all
of the host, EISA, ISA and X-bus devices in a system. When necessary, it per-
forms data bus steering to ensure data travels over the correct paths between
the current bus master and the currently-addressed device. It incorporates a
toolbox including all of the standard support logic necessary in any EISA ma-
chine. It should be noted that the ISA bus is a subset of the EISA bus. For this
reason, all references to the EISA bus in this or any other MindShare book refer
to both the ISA bus and the Extended ISA bus (EISA).

The Next Chapter

The next chapter, “Intel 82350DT EISA Chipset,” provides an introduction to
Intel's EISA chipset.

Bus Cycle Initiation

When a device requires the use of the bus to communicate with another device
in the system, it requests the use of the bus from the CAC. Upon being granted
ownership of the bus, the bus master initiates the bus cycle by addressing the
target device, or slave.

EISA System Architecture

124

Bridge

Upon sensing the start of the bus cycle, the EISA chipset must aid in the com-
munication process. Acting as a bridge, the EISA chipset must allow the ad-
dress generated by the bus master to propagate onto all of the system buses so
all of the devices in the system have an opportunity to determine if they are
currently being addressed. In this section, this function is referred to as bridg-
ing. This term isn't part of the EISA specification, but is employed here to rein-
force the visual image of the process being described. Table 11-1 defines the
circumstances under which the EISA chipset must act as a bridge. Figure 11-1
illustrates the relationship of the bridge to the three buses. At the start of a bus
cycle, neither the current bus master nor the EISA chipset knows which bus the
target slave is located on. For this reason, the EISA chipset always propagates
addresses generated by the host CPU onto the EISA and X-buses. Conversely, it
always propagates addresses by an EISA or ISA bus master onto the host and
X-buses.

Chapter 11: Bridge, Translator, Pathfinder, Toolbox

125

Table 11-1. Situations Requiring Address Bridging
Bus Master Type Slave Type Action Required

Host CPU host slave No bridging required.
Host CPU EISA slave Address must be passed from the host

bus to the EISA bus.
Host CPU ISA expansion

slave
Address must be passed from the host
bus onto the ISA bus.

Host CPU ISA X-bus slave Address must be passed from the host
bus onto the ISA bus and then onto the X-
bus.

EISA Bus Master host slave Address must be passed from the EISA
bus to the host bus.

EISA Bus Master EISA slave No bridging required.
EISA Bus Master ISA expansion

slave
No bridging required.

EISA Bus Master ISA X-bus slave Address must be passed from the EISA
bus to the X-bus.

ISA Bus Master host slave Address must be passed from the ISA bus
to the host bus.

ISA Bus Master EISA slave No bridging required.
ISA Bus Master ISA expansion

slave
No bridging required.

ISA Bus Master ISA X-bus slave Address must be passed from the ISA bus
to the X-bus.

EISA System Architecture

126

Figure 11-1. The Bridge

In addition, under some circumstances the data being transferred between the
bus master and the slave must be allowed to pass from one system bus to an-
other. Table 11-2 defines these situations.

XBHE#

X Address Bus

X Data Bus

SBHE#

Host Address Bus, HA2:HA31

Host Address Bus, HBE0#:HBE3#

EISA/Host
Address Bridge

EISA/Host
Data Bridge

Host Data Bus, HD0:HD31

}
}

}

EISA Bus

Host Bus

X-Bus

EISA/X-Bus
Address Buffer

EISA/X-Bus
Data

Transceiver

System Data Bus, SD0:SD31

BE0#:BE3#

LA Bus

System Address Bus

Chapter 11: Bridge, Translator, Pathfinder, Toolbox

127

Table 11-2. Situations Requiring Data Bridging
Bus Master

Type

Slave Type

Action Required

Host CPU host slave No bridging required.
Host CPU EISA slave On a read, data must be passed from the EISA data

bus to the host data bus. On a write, data must be
passed from the host data bus to the EISA data bus.

Host CPU ISA expansion
slave

On a read, data must be passed from the ISA data
bus to the host data bus. On a write, data must be
passed from the host data bus to the ISA data bus.

Host CPU X-bus slave On a read, data must be passed from the X data bus
to the ISA data bus and then from the ISA data bus
to the host data bus. On a write, data must be
passed from the host data bus to the ISA data bus
and then to the X data bus.

EISA Bus
Master

host slave On a read, data must be passed from the host data
bus onto the EISA data bus. On a write, data must
be passed from the EISA data bus to the host data
bus.

EISA Bus
Master

EISA slave No bridging required.

EISA Bus
Master

ISA expansion
slave

No bridging required.

EISA Bus
Master

X-bus slave On a read, data must be passed from the X data bus
to the EISA data bus. On a write, data must be
passed from the EISA data bus to the X data bus.

ISA Bus
Master

host slave On a read, data must be passed from the host data
bus to the ISA data bus. On a write, data must be
passed from the ISA data bus to the host data bus.

ISA Bus
Master

EISA slave No bridging required.

ISA Bus
Master

ISA expansion
slave

No bridging required.

ISA Bus
Master

X-bus slave On a read, data must be passed from the X data bus
to the ISA data bus. On a write, data must be passed
from the ISA data bus to the X data bus.

EISA System Architecture

128

Translator

Address Translation

The EISA chipset must translate the address being generated by the bus master
to forms that are understood by the slave devices on all three buses. Table 11-3
defines the different forms of address information expected by devices on the
three buses.

Table 11-3. Address Translation Table
Bus Master Slave Type and Address Expected

Type

Address

8-bit
ISA

 16-bit
ISA

 16-bit
EISA

 32-bit
EISA

 32-bit
Host

Host
CPU

A[31:2] and
BE#[3:0]

SA[19:0
]

SA[23:0] and
SBHE#

LA[31:2]
and BE#[3:0]

LA[31:2]
and BE#[3:0]

A[31:2] and
BE#[3:0]

16-bit
EISA
Bus
Master

LA[31:2] and
BE#[3:0]

SA[19:0
]

SA[23:0] and
SBHE#

LA[31:2]
and BE#[3:0]

LA[31:2]
and BE#[3:0]

A[31:2] and
BE#[3:0]

32-bit
EISA
Bus
Master

LA[31:2] and
BE#[3:0]

SA[19:0
]

SA[23:0] and
SBHE#

LA[31:2]
and BE#[3:0]

LA[31:2]
and BE#[3:0]

A[31:2] and
BE#[3:0]

16-bit
ISA
Bus
Master

SA[23:0] and
SBHE#

SA[19:0
]

SA[23:0] and
SBHE#

LA[31:2]
and BE#[3:0]

LA[31:2]
and BE#[3:0]

A[31:2] and
BE#[3:0]

When an EISA bus master or the host CPU is performing a bus cycle, the EISA
chipset must convert the bus master's byte enable outputs, BE#[3:0], into the
correct setting on the A0, A1 and BHE# signal lines. Conversely, when an ISA
bus master is performing a bus cycle, A0, A1 and BHE# must be converted to
the correct setting on the byte enable lines.

Command Line Translation

Each of the three types of bus masters, EISA, ISA and host CPU, uses a specific
set of signal lines to indicate the address phase and data phase periods and the
type of bus cycle in progress. Conversely, each of the three types of slaves rec-
ognizes the same respective set of signals indicating address phase, data phase
and the bus cycle type. When a bus master initiates a bus cycle, the EISA chip-
set must convert the bus master's signal set to those recognized by the other

Chapter 11: Bridge, Translator, Pathfinder, Toolbox

129

two slave types. This enables any bus master type to communicate with devices
of any other type. Table 11-4 indicates the signal lines used by each of the three
bus master and slave types to indicate address phase, data phase and the bus
cycle type.

Table 11-4. Command Lines

Device
Type

Address
Phase
Signal

Data Phase Signal

Bus Cycle Type Indicators

EISA START# CMD# M/IO# and W/R#
ISA BALE SMRDC#, SMWTC#,

MRDC#, MWTC#, IORC#,
IOWC#

SMRDC#, SMWTC#, MRDC#,
MWTC#, IORC#, IOWC#

Host ADS# End of ADS# until
READY# sampled active

W/R#, M/IO# and D/C#

Pathfinder

Under some circumstances, data path steering is necessary. When a bus master
is communicating with a slave using a data path or paths that the slave is inca-
pable of using, the data bus steering logic must be activated. During a read bus
cycle, the data bus steering logic ensures that the returning data arrives at the
bus master on the expected data path(s). During a write bus cycle, the data bus
steering logic ensures that the data being written by the bus master is routed to
the data path(s) that the slave expects to receive the data on. In an EISA ma-
chine, the data bus steering function is provided by the EISA chipset. Table 11-
5 defines the situations when data bus steering is necessary. A more detailed
description of data bus steering may be found in the MindShare book entitled
ISA System Architecture. The 32-bit bus master or a 16-bit EISA bus master indi-
cates the data path(s) to be used during a bus cycle using its byte enable out-
puts, BE#[3:0]. A 16-bit ISA bus master uses A0 and BHE# to indicate the data
path(s) that will be used during a bus cycle. The addressed slave indicates the
data path(s) that it is connected to by asserting IO16#, M16#, EX16# or EX32#. If
IO16#, M16# or EX16# is asserted by the currently-addressed slave, it is a 16-bit
device and is connected to data paths 0 and 1. If the currently-addressed slave
asserts EX32#, it is a 32-bit device and is connected to all four data paths. If
none of these lines are asserted, the addressed slave is an 8-bit device and is
connected only to path 0.

EISA System Architecture

130

Table 11-5. Situations Requiring Data Bus Steering
Bus

Master
Type

Slave
Type

Bus
Cycle
Type

Steering Action Required

32-bit 8-bit write When a 32-bit bus master is writing a single byte to an 8-
bit device over paths 1, 2, or 3, the data bus steering
logic must copy the byte down to path 0 so it can get to
the 8-bit device. When a 32-bit bus master is writing
multiple bytes to an 8-bit device in a single bus cycle,
the data bus steering logic must route the data to path 0
one byte at a time. As each byte is routed to the lower
data path, the address seen by the 8-bit device must be
incremented by the steering logic and the MWTC# or
IOWC# line must be turned off and then on again to
trick the 8-bit device into thinking another bus cycle has
been initiated.

32-bit 8-bit read When a 32-bit bus master is reading a single byte from
an 8-bit device over path 1, 2, or 3, the data bus steering
logic must copy the byte from path 0 to the path the bus
master expects to receive the byte on. When a 32-bit bus
master is attempting to read multiple bytes from an 8-bit
device in a single bus cycle, the 8-bit device can only
return one byte at a time. The steering logic must ad-
dress each byte individually, copy it to the proper data
path and latch it in a latching data bus transceivers until
all of the requested bytes have been retrieved. As each
byte is routed to and latched by the proper data bus
transceiver, the address seen by the 8-bit device must be
incremented by the steering logic and the MRDC# or
IORC# line must be turned off and then on again to trick
the 8-bit device into thinking another bus cycle has been
initiated.

32-bit 16-bit write When a 32-bit bus master is writing one or two bytes to
a 16-bit device over paths 2 or 3, the data bus steering
logic must copy the byte or bytes to path 0 and/or path
1 so that they can get to the 16-bit device.

Chapter 11: Bridge, Translator, Pathfinder, Toolbox

131

Bus
Master
Type

Slave
Type

Bus
Cycle
Type

Steering Action Required

32-bit 16-bit read When a 32-bit bus master is reading one or two bytes
from a 16-bit device over paths 2 or 3, the data bus steer-
ing logic must copy the byte or bytes from path 0
and/or path 1 to path 2 and/or path 3 so that they are
received by the bus master over the expected data
path(s).

32-bit 32-bit read
or
write

none

16-bit 8-bit write When a 16-bit bus master is writing a single byte to an 8-
bit device over path 1, the data bus steering logic must
copy the byte down to path 0 so that it can get to the 8-
bit device. When a 16-bit bus master is writing two bytes
to an 8-bit device in a single bus cycle, the data bus
steering logic must route the data to path 0 one byte at a
time. As each byte is routed to the lower data path, the
address seen by the 8-bit device must be incremented by
the steering logic and the MWTC# or IOWC# line must
be turned off and then on again to trick the 8-bit device
into thinking another bus cycle has been initiated.

16-bit 16-bit read
or
write

none

16-bit 32-bit write When a 16-bit bus master is writing one or two bytes to
either of the last two locations in a doubleword in a sin-
gle bus cycle, the steering logic must copy the byte or
bytes to path 2 and/or path 3 so that the data will be
routed to the proper location(s) within the addressed
doubleword.

16-bit 32-bit read When a 16-bit bus master is reading one or two bytes
from either of the last two locations in a doubleword in
a single bus cycle, the steering logic must route the byte
or bytes from path 2 and/or path 3 to path 0 and/or
path 1 so that the data will be received over the proper
path(s).

Table 11 - 5 cont.

EISA System Architecture

132

Toolbox

In addition to providing the bridge, translation and data bus steering functions,
the EISA chipset includes a toolbox with all of the basic support elements nec-
essary for the proper function of any EISA system. These include:

• Two modified Intel 8259A programmable interrupt controllers in a mas-

ter/slave configuration
• Two modified Intel 8237 DMA controllers in a master/slave configuration
• The refresh logic
• The central arbitration control
• Five programmable timers
• The NMI logic

Detailed descriptions of interrupts, DMA, refresh, the timers and the NMI logic
can be found in the MindShare book entitled ISA System Architecture. Informa-
tion regarding the EISA-specific enhancements to the interrupt, DMA, refresh
and the NMI control logic can be found earlier in this book. Information re-
garding the Central Arbitration Control (CAC) can be found earlier in this pub-
lication. A description of the Intel 82357 Integrated Systems Peripheral (ISP)
can be found in the next chapter. The ISP, part of the Intel EISA chipset, con-
tains all of the above-mentioned logic elements.

Chapter 12: Intel 82350DT EISA Chipset

133

Chapter 12
The Previous Chapter

The previous chapter described the major functions performed by an EISA
chipset.

This Chapter

This chapter provides an introduction to the Intel 82350DT EISA chipset. The
focus is on the 82358DT EISA Bus Controller (EBC), the 82357 Integrated Sys-
tems Peripheral (ISP), and the 82352 EISA Bus Buffers (EBBs).

Introduction

This chapter is not intended as a substitute for the Intel publication that de-
scribes the 82350DT EISA chipset. It is intended as a companion to the Intel
document, providing an introduction to the roles each component plays in a
typical EISA system. Only the crucial chipset components are represented
here: the EBC, the address EBB, the data EBB and the ISP. For detailed informa-
tion, refer to the Intel document entitled “82350DT EISA Chipset,” order num-
ber 290377-002. The EBC can be configured to operate in three different types
of environments:

• With the host interface unit interfaced directly to the host CPU subsystem.

This is referred to as the 82350 environment.
• With the host interface unit interfaced to the host bus through the Intel

82359 DRAM controller. This is referred to as the 82350DT/enhanced envi-
ronment.

• With the host interface unit interfaced to a buffered bus. The buffered bus,
in turn, is connected to the Intel 82359 DRAM controller, which is con-
nected to the host bus. This is referred to as the 82350DT/buffered envi-
ronment.

This chapter describes operation of the EISA chipset configured for the 82350
environment.

EISA System Architecture

134

Figure 12-1 illustrates the relationship of the Intel EBC, ISP, Data Buffer and
Address Buffer to the host, EISA/ISA and X-buses in the 82350 environment.

Figure 12-1. The Intel EISA Chipset

 EISA Bus Controller (EBC) and EISA Bus Buffers (EBBs)

General

The EBC is pictured in figure 12-2. Together with the Data and Address EBBs,
the EBC provides the bridging, translation and data bus steering functions de-
scribed in the previous chapter. The following sections describe each of the
functional areas that comprise the EBC.

Host Bus

EISA/ISA Bus

X Bus

82358
EBC

82357
ISP

Data
Buffer Address

Buffer

X-Bus
Buffer

(Data Bus
Steering)

Chapter 12: Intel 82350DT EISA Chipset

135

CPU Selection

These four inputs to the EBC indicate the host CPU type and its bus frequency.
Table 12-1 defines the valid settings for these inputs. If the host CPU is inte-
grated onto the system board, these pins should be permanently strapped to
the appropriate state. When the host CPU resides on a plug-in card, however,
the four CPU signals should be set to the appropriate state when the CPU card
is inserted. This allows automatic configuration of the EBC to match the CPU
card installed in the machine. CPU input patterns not specified in table 12-1 are
reserved for future use.

Table 12-1. CPU Type/Frequency
CPU3 CPU2 CPU1 CPU0 CPU Type/Frequency

1 0 1 0 32-bits, 2x clock, 25MHz 80386
1 0 1 1 32-bits, 2x clock, 33MHz 80386
1 1 0 0 32-bits, 1x clock, 25MHz 80486
1 1 0 1 32-bits, 1x clock, 33MHz 80486

EISA System Architecture

136

Figure 12-2. The Intel 82358DT EBC

Data
Buffer

Control

Address
Buffer

Control

Host Bus
Interface

Unit

Cache
Support

Reset
Control

CPU
Select

Slot-Specific
I/O Support

LIOWAIT#

TEST1#

AENLE#

To Data Buffer

To Address Buffer

Host Bus

Host Cache

Reset Logic

CPU Select Lines

Clock Logic

ISA Bus

EISA Bus

ISP

Clock
Generator

Unit

ISA Bus
Interface

Unit

EISA Bus
Interface

Unit

ISP
Interface

Unit

I/O
Recovery

Logic

Test
Support

Chapter 12: Intel 82350DT EISA Chipset

137

Data Buffer Control and EISA Bus Buffer (EBB)

General

The EBC Data Buffer Control block pictured in figure 12-2 uses a group of EBC
output signals to:

• control the data transceivers when routing data between the host and EISA

buses.
• perform data bus steering when necessary, utilizing the latches and data

bus transceivers.

These transceivers and latches are located in the 82352 EISA Bus Buffer, or EBB,
pictured in figure 12-3. Table 12-2 defines the EBC output signals used to con-
trol the data EBB.

Table 12-2. EBC Output Signals Used to Control the Data EBB
Signal Pin Description

SDCPYEN01# 4 Enables the data EBB's steering transceiver between EISA
data paths zero and one. The direction of copy is defined by
the state of the SDCPYUP signal. If SDCPYUP is low, the byte
on EISA data path one is copied to EISA data path zero. If
SDCPYUP is high, the byte on EISA data path zero is copied
to EISA data path one.

SDCPYEN02# 5 Enables the data EBB's steering transceiver between EISA
data paths zero and two. The direction of copy is defined by
the state of the SDCPYUP signal. If SDCPYUP is low, the byte
on EISA data path two is copied to EISA data path zero. If
SDCPYUP is high, the byte on EISA data path zero is copied
to EISA data path two.

SDCPYEN03# 6 Enables the data EBB's steering transceiver between EISA
data paths zero and three. The direction of copy is defined by
the state of the SDCPYUP signal. If SDCPYUP is low, the byte
on EISA data path three is copied to EISA data path zero. If
SDCPYUP is high, the byte on EISA data path zero is copied
to EISA data path three.

EISA System Architecture

138

Signal Pin Description

SDCPYEN13# 7 Enables the data EBB's steering transceiver between EISA
data paths one and three. The direction of copy is defined by
the state of the SDCPYUP signal. If SDCPYUP is low, the byte
on EISA data path three is copied to EISA data path one. If
SDCPYUP is high, the byte on EISA data path one is copied
to EISA data path three.

SDCPYUP 8 See SDCPYEN01# description.
SDHDLE3# 10 When activated by the EBC, causes the data EBB to latch the

data byte on EISA data path three.
SDHDLE2# 11 When activated by the EBC, causes the data EBB to latch the

data byte on EISA data path two.
SDHDLE1# 12 When activated by the EBC, causes the data EBB to latch the

data byte on EISA data path one.
SDHDLE0# 13 When activated by the EBC, causes the data EBB to latch the

data byte on EISA data path zero.
SDOE2# 14 When activated by the EBC, causes the data EBB to drive the

two previously latched bytes onto EISA data paths two and
three.

SDOE1# 16 When activated by the EBC, causes the data EBB to drive the
previously latched byte onto EISA data path one.

SDOE0# 17 When activated by the EBC, causes the data EBB to drive the
previously latched byte onto EISA data path zero.

HDSDLE1# 18 When activated by the EBC, causes the data EBB to latch four
bytes from the host data bus.

HDOE1# 20 When activated by the EBC, causes the data EBB to drive the
two bytes latched into the path two and three latches onto
paths two and three of the host data bus.

HDOE0 22 When activated by the EBC, causes the data EBB to drive the
two bytes latched into the path zero and one latches onto
paths zero and one of the host data bus.

Table 12 - 2, cont.

Chapter 12: Intel 82350DT EISA Chipset

139

Figure 12-3. The Data EISA Bus Buffer, or EBB

Transfer Between 32-bit EISA Bus Master and 8-bit ISA Slave

Two examples are described in the following paragraphs: a 32-bit read from an
8-bit ISA slave; and a 32-bit write to an 8-bit ISA slave. Refer to figure 12-4 dur-
ing the discussion.

In the first example, the bus master is initiating a 32-bit read from an 8-bit
ISA slave. The 32-bit bus master begins the bus cycle by placing the double-

HD0:HD7

HD8:HD15

HD16:HD23

HD24:HD31

SD0:SD7

SD8:SD15

SD16:SD23

SD24:SD31
2-Way
Path 3
Latch

2-Way
Path 2
Latch

2-Way
Path 1
Latch

2-Way
Path 0
Latch

Path 0/3
Transceiver Path 0/2

Transceiver
Path 0/1

Transceiver

Path 1/3
Transceiver

H
os

t
D

at
a

B
us

E
IS

A
/I

SA
 D

at
a

B
u

s

EISA
Data
Path

0

EISA
Data
Path

1

EISA
Data
Path

2

EISA
Data
Path

3

Host
Data
Path

3

Host
Data
Path

0

Host
Data
Path

1

Host
Data
Path

2

EISA System Architecture

140

word address on LA[31:2], setting M/IO# to the appropriate state, and activat-
ing all four byte enable lines, BE#[3:0]. The bus master sets the W/R# bus cycle
definition line low to indicate a read is in progress and activates the START#
signal to indicate that the bus cycle has begun.

At the end of address time, which is one BCLK cycle in duration, the 32-bit bus
master deactivates START#, the EBC activates CMD# and the bus master sam-
ples the EX32# line to see if a 32-bit EISA slave is responding. When the bus
master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 8 or 16-bit
host slave, EX32# will not be returned active. Since an 8-bit ISA slave is being
addressed in this example, EX32# is not sampled active by the bus master. At
the end of address time, the EBC also samples EX32#, as well as EX16#, M16#
and IO16# to determine the size and type of slave device that is responding.
Since none of these four signals are sampled active, the EBC determines that
the bus master is currently addressing an 8-bit ISA slave. Upon determining
that the addressed slave is not connected to all four data paths, the bus master
assumes that the EBC and EBB will take care of any data bus steering that may
be necessary to accomplish the transfer. In order to let the EBC and EBB use the
buses for steering, the bus master disconnects from the four data paths, the
byte enable lines and the START# signal at midpoint of data time. The bus mas-
ter continues to drive the doubleword address onto LA[31:2], however, as well
as M/IO# and W/R#. The bus master then samples the state of the EX32# line
at the end of each data time until it is sampled active. During this period of
time, data bus steering is being performed by the EBC and EBB.

The EBC converts the M/IO# and W/R# settings to an active level on either the
IORC#, SMRDC# or MRDC# bus cycle definition line on the ISA portion of the
bus. The EBC also converts the active level on the byte enable lines to zeros on
SA0 and SA1 and a low on SBHE#. The addressed 8-bit ISA slave responds to
the read and drives the byte from the addressed location onto the lower data
path, SD[7:0]. The EBC monitors NOWS# and CHRDY to determine when the
slave is ready to end the transfer and then latches the byte into the path zero
latch in the data EBB using the EBC's SDHDLE0# output signal. The EBC deac-
tivates CMD#.

Having completed the transfer of the first of the four bytes, the EBC increments
the address by setting SA0 to a one, SA1 to a zero and SBHE# active. The EBC
then tricks the addressed slave into thinking a new bus cycle has begun by
generating START# again, followed by CMD#. When the EBC senses the
changes on START# and CMD#, it turns the ISA command line off (SMRDC#,
SMWTC#, IORC# or IOWC#) and then on again, causing the 8-bit ISA device to
think another bus cycle has begun. The 8-bit ISA slave then drives the byte

Chapter 12: Intel 82350DT EISA Chipset

141

from the currently addressed location onto data path zero, SD[7:0]. The EBC
again monitors NOWS# and CHRDY to determine when the slave is ready to
end the transfer. The EBC then copies the byte to data path one and latches it
into the data EBB's path one data latch. This is accomplished by activating the
EBC's SDCPYEN01# and SDCPYUP output signals to copy the byte from path
zero to path one and then latching the byte into the path one latch in the data
EBB using the EBC's SDHDLE1# output signal. The first two of the four re-
quested data bytes are now latched into the data EBB.

The EBC again increments the address by setting SA0 to a zero, SA1 to a one
and SBHE# active. The EBC again tricks the addressed slave into thinking a
new bus cycle has begun by generating START#, followed by CMD#, causing
the appropriate ISA command line to be deactivated and then activated again.
The 8-bit ISA slave then drives the byte from the currently addressed location
onto data path zero, SD[7:0]. The EBC again monitors NOWS# and CHRDY to
determine when the slave is ready to end the transfer. The EBC then copies the
byte to data path two and latches it into the data EBB's path two data latch.
This is accomplished by activating the EBC's SDCPYEN02# and SDCPYUP
output signals to copy the byte from path zero to path two and then latching
the byte into the path two latch in the data EBB using the EBC's SDHDLE2#
output signal. The first three of the four requested data bytes are now latched
into the data EBB.

The EBC again increments the address by setting SA0 and SA1 high and
SBHE# active. The EBC again tricks the addressed slave into thinking a new
bus cycle has begun by generating START#, followed by CMD#, causing the
appropriate ISA command line to be deactivated and then activated again. The
8-bit ISA slave then drives the byte from the currently addressed location onto
data path zero, SD[7:0]. The EBC again monitors NOWS# and CHRDY to de-
termine when the slave is ready to end the transfer. The EBC then copies the
byte to data path three and latches it into the data EBB's path three data latch.
This is accomplished by activating the EBC's SDCPYEN03# and SDCPYUP
output signals to copy the byte from path zero to path three and then latching
the byte into the path three latch in the data EBB using the EBC's SDHDLE3#
output signal. All four of the requested data bytes are now latched into the data
EBB.
Using its SDOE0#, SDOE1# and SDOE2# outputs, the EBC now commands the
data EBB to drive the four latched bytes onto the four data paths. The EBC ac-
tivates the EX32# and EX16# lines at the midpoint of the current data time to
signal the end of data bus steering. At the trailing-edge of the current data
time, the 32-bit EISA bus master samples EX32# active, indicating that the nec-
essary steering has been completed. The bus master can begin to drive the ad-

EISA System Architecture

142

dress for the next bus cycle onto the buses at the midpoint of the next data
time. The current bus cycle completes at the end of this last data time. Since this
is a read bus cycle, the bus master reads the four bytes from the four data paths
when the EBC deactivates CMD#, ending the bus cycle.

In the second example, the bus master is initiating a 32-bit write to an 8-bit
ISA slave. The 32-bit bus master begins the bus cycle by placing the double-
word address on LA[31:2], setting M/IO# to the appropriate state, and activat-
ing all four byte enable lines, BE#[3:0]. The bus master sets the W/R# bus cycle
definition line high to indicate a write is in progress and activates the START#
signal to indicate that the bus cycle has begun. At the midpoint of address time,
the bus master begins to drive the four bytes onto the four EISA data paths.

At the end of address time, which is one BCLK cycle in duration, the following
events occur:

• The 32-bit bus master deactivates START# and the EBC activates CMD#.
• Using its four SDHDLEx# outputs, the EBC causes the data EBB to latch the

four data bytes being driven onto the four EISA data paths by the bus mas-
ter.

• The bus master samples the EX32# line to see if a 32-bit EISA slave is re-
sponding.

When the bus master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an
8 or 16-bit host slave, EX32# will not be returned active. Since an 8-bit ISA slave
is being addressed in this example, EX32# is not sampled active by the bus
master. At the end of address time, the EBC also samples EX32#, as well as
EX16#, M16# and IO16# to determine the size and type of slave device that is
responding. Since none of these four signals are sampled active, the EBC de-
termines that the bus master is currently addressing an 8-bit ISA slave. Upon
determining that the addressed slave is not connected to all four data paths, the
bus master assumes that the EBC and EBB will take care of any data bus steer-
ing that may be necessary to accomplish the transfer. In order to let the EBC
and EBB use the buses for steering, the bus master disconnects from the four
data paths, the byte enable lines and the START# signal at midpoint of data
time. The bus master continues to drive the doubleword address onto LA[31:2],
however, as well as M/IO# and W/R#. The bus master then samples the state
of the EX32# line at the end of each data time until it is sampled active. During
this period of time, data bus steering is being performed by the EBC and EBB.

The EBC converts the M/IO# and W/R# settings to an active level on either the
IOWC#, SMWTC# or MWTC# bus cycle definition line on the ISA portion of

Chapter 12: Intel 82350DT EISA Chipset

143

the bus. The EBC also converts the active level on the byte enable lines to zeros
on SA0 and SA1 and a low on SBHE#. Using its SDOE0# output, the EBC
causes the data EBB to drive the byte latched in its path zero latch onto EISA
data path zero. The addressed 8-bit ISA slave responds to the write and accepts
the byte from the lower data path, SD[7:0]. The EBC monitors NOWS# and
CHRDY to determine when the slave is ready to end the transfer. The EBC de-
activates CMD# and SDOE0#, causing the data EBB to cease driving the byte
onto EISA data path zero.

Having completed the transfer of the first of the four bytes, the EBC increments
the address by setting SA0 to a one, SA1 to a zero and SBHE# active. The EBC
then tricks the addressed slave into thinking a new bus cycle has begun by
generating START# again, followed by CMD#. This causes the appropriate ISA
command line to be deactivated and then activated again. Using its SDCPYUP,
SDCPYEN01# and SDOE1# output signals, the EBC causes the data EBB to
drive the byte latched in its path one latch onto path one and copies it down to
EISA data path zero. The 8-bit ISA slave then accepts the byte from EISA data
path zero, SD[7:0]. The EBC again monitors NOWS# and CHRDY to determine
when the slave is ready to end the transfer. The first two of the four data bytes
have been written to the target 8-bit ISA slave. The EBC deactivates CMD#,
SDCPYEN01# and SDOE1#, causing the data EBB to cease driving the byte
onto EISA data path one and turning off the EBB's copy transceiver.

The EBC again increments the address by setting SA0 to a zero, SA1 to a one
and SBHE# active. The EBC again tricks the addressed slave into thinking a
new bus cycle has begun by generating START#, followed by CMD#, causing
the appropriate ISA command line to be deactivated and then activated again.
Using its SDCPYUP, SDCPYEN02# and SDOE2# output signals, the EBC causes
the data EBB to drive the byte latched in its path two latch onto path two and
copies it down to EISA data path zero. The 8-bit ISA slave then accepts the byte
from EISA data path zero, SD[7:0]. The EBC again monitors NOWS# and
CHRDY to determine when the slave is ready to end the transfer. The first
three of the four data bytes have been written to the target 8-bit ISA slave. The
EBC deactivates CMD#, SDCPYEN02# and SDOE2#, causing the data EBB to
cease driving the byte onto EISA data path two and turning off the EBB's copy
transceiver.

The EBC again increments the address by setting SA0 and SA1 high and
SBHE# active. The EBC again tricks the addressed slave into thinking a new
bus cycle has begun by generating START#, followed by CMD#, causing the
appropriate ISA command line to be deactivated and then activated again. Us-
ing its SDCPYUP, SDCPYEN03# and SDOE2# output signals, the EBC causes

EISA System Architecture

144

the data EBB to drive the byte latched in its path three latch onto path three and
copies it down to EISA data path zero. The 8-bit ISA slave then accepts the byte
from EISA data path zero, SD[7:0]. The EBC again monitors NOWS# and
CHRDY to determine when the slave is ready to end the transfer. All four of
the requested data bytes have now been written to the target 8-bit ISA slave.
The EBC deactivates CMD#, SDCPYEN03# and SDOE2#, causing the data EBB
to cease driving the byte onto EISA data path three and turning off the EBB's
copy transceiver.

The EBC activates the EX32# and EX16# lines at the midpoint of the current
data time to signal the end of data bus steering. At the trailing-edge of the cur-
rent data time, the 32-bit EISA bus master samples EX32# active, indicating that
the necessary steering has been completed. The bus master can begin to drive
the address for the next bus cycle onto the buses at the midpoint of the next
data time. The current bus cycle completes at the end of this last data time.
Since this is a write bus cycle, the bus master ends the bus cycle when the EBC
deactivates CMD#.

Chapter 12: Intel 82350DT EISA Chipset

145

Figure 12-4. Linkage Between the EBC and the Data EBB

Transfer Between 32-bit EISA Bus Master and
16-bit ISA Slave

Two examples are described in the following paragraphs: a 32-bit read from
the 16-bit ISA slave; and a 32-bit write to a 16-bit ISA slave. Refer to figure 12-4
during the discussion.

In the first example, the bus master is initiating a 32-bit read from a 16-bit
ISA slave. The 32-bit bus master begins the bus cycle by placing the double-
word address on LA[31:2], setting M/IO# to the appropriate state, and activat-
ing all four byte enable lines, BE#[3:0]. The bus master sets the W/R# bus cycle

SDHDLE0#

SDHDLE1#

SDHDLE2#

SDHDLE3#

B01_LE#
B23_LE#

SDOE0#
SDOE1#
SDOE2#

AB0_OE#
AB1_OE#
AB2_OE#
AB3_OE#

}
}

}

Latches Data
From EISA
Data Bus
Into EBB

Drives
Latched Data

Onto EISA Bus

HDSDLE1#

A0_LE#

A1_LE#

A2_LE#
A3_LE#

Latches Host
Bus Data
Into EBB

EBCEBB

A0_OE#

A1_OE#

A2_OE#

A3_OE#

HDOE0#

HDOE1#

Drives
Latched

Data Onto
Host Bus
From EBB

SDCPYEN01#

SDCPYEN13#

SDCPYEN03#
SDCPYEN02#

SDCPYUP

B01CPYE#

B02CPYE#

B03CPYE#

B13CPYE#

CPY_DN#

Data Bus
Steering
Control
For EBB

SD0:SD7

SD8:SD15

SD16:SD23

SD24:SD31

HD0:HD7

HD8:HD15

HD16:HD23

HD24:HD31

EBC
Signal
Names

EBB
Signal
Names

EX16#

EX32#
M16#

IO16#
EMSTR16#

MASTER16#

HHLDA
EXMASTER#(from EISA bus)

(from host CPU)

(from EISA bus)

(from ISP)

(from/to ISA bus)

(from/to ISA bus)

(from/to EISA bus)

(from/to EISA bus)

HRDYO#(to host CPU)

SA0
SA1
SBHE#
HBE0#:HBE3#
BE0#:BE3#
START#
CMD#

(to/from ISA bus)

(to/from ISA bus)

(to/from ISA bus)

(to/from Host bus)

(to/from EISA bus)

(to/from EISA bus)

(to/from EISA bus)

HLOCIO#

HLOCMEM#
(from host
IO slaves)

(from host
memory slaves)

EISA System Architecture

146

definition line low to indicate a read is in progress and activates the START#
signal to indicate that the bus cycle has begun.

The EBC determines that a 32-bit EISA bus master has initiated the bus cycle
using the criteria in table 12-3. HHLDA, Host Hold Acknowledge, is inactive,
indicating that the host CPU is not the bus master. EXMASTER# is active and
MASTER16# is inactive, indicating that a 32-bit EISA bus master is using the
buses.

Table 12-3. EBC's Bus Master Type Determination Criteria

HHLDA

REFRESH#

EXMASTER#

MASTER16#

EMSTR16#

MSBURST#

Bus Master

Type

0 1 1 1 1 1 32-bit host
CPU

1 0 1 1 x 1 Refresh

1 1 0 1 1 1 32-bit EISA

1 1 0 1 1 0 32-bit EISA
burst

1 1 0 pulse 1 0 downshift
32-bit EISA
burst

1 1 0 0 1 1 16-bit EISA

1 1 0 0 1 0 16-bit EISA
burst

1 1 1 0 0 1 16-bit ISA

1 1 1 1 1 1 DMA

1 1 1 1 1 0 DMA burst

At the end of address time, which is one BCLK cycle in duration, the 32-bit bus
master deactivates START#, the EBC activates CMD# and the bus master sam-
ples the EX32# line to see if a 32-bit EISA slave is responding. When the bus
master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 8 or 16-bit
host slave, EX32# will not be returned active. Since a 16-bit ISA slave is being
addressed in this example, EX32# is not sampled active by the bus master. At
the end of address time, the EBC also samples EX32#, as well as EX16#, M16#
and IO16# to determine the size and type of slave device that is responding.
Since either M16# or IO16# is sampled active, the EBC determines that the bus
master is currently addressing a 16-bit ISA slave. Upon determining that the
addressed slave is not connected to all four data paths, the bus master assumes
that the EBC and EBB will take care of any data bus steering that may be neces-
sary to accomplish the transfer. In order to let the EBC and EBB use the buses
for steering, the bus master disconnects from the four data paths, the byte en-
able lines and the START# signal at midpoint of data time. The bus master con-

Chapter 12: Intel 82350DT EISA Chipset

147

tinues to drive the doubleword address onto LA[31:2], however, as well as
M/IO# and W/R#. The bus master then samples the state of the EX32# line at
the end of each data time until it is sampled active. During this period of time,
data bus steering is being performed by the EBC and EBB.
The EBC converts the M/IO# and W/R# settings to an active level on either the
IORC#, SMRDC# or MRDC# bus cycle definition line on the ISA portion of the
bus. The EBC also converts the active level on the byte enable lines to zeros on
SA0 and SA1 and a low on SBHE#. The low on SA0 and SBHE# indicates to the
addressed 16-bit ISA slave that a 16-bit transfer is in progress. The addressed
16-bit ISA slave responds to the read and drives the byte from the even-
addressed location onto the EISA data path zero, SD[7:0], and the byte from the
odd-addressed location onto EISA data path one, SD[15:8]. The EBC monitors
NOWS# and CHRDY to determine when the slave is ready to end the transfer
and then latches the two bytes into the path zero and path one latches in the
data EBB using the EBC's SDHDLE0# and SDHDLE1# output signals. The EBC
deactivates CMD#.

Having completed the transfer of the first two of the four bytes, the EBC incre-
ments the address by setting SA0 to a zero, SA1 to a one and SBHE# active. The
EBC then tricks the addressed slave into thinking a new bus cycle has begun by
generating START# again, followed by CMD#, causing the appropriate ISA
command line to be deactivated and then activated again. The 16-bit ISA slave
then drives the byte from the even-addressed location onto EISA data path
zero, SD[7:0], and the byte from the odd-addressed location onto EISA data
path one. The EBC again monitors NOWS# and CHRDY to determine when the
slave is ready to end the transfer. The EBC then copies the two bytes on paths
zero and one to data paths two and three and latches them into the data EBB's
path two and three data latches. This is accomplished by activating the EBC's
SDCPYEN02#, SDCPYEN13# and SDCPYUP output signals to copy the byte
from path zero to path two, the byte from path one to path three, and then
latching the bytes into the path two and three latches in the data EBB using the
EBC's SDHDLE2# and SDHDLE3# output signals. All four of the requested
data bytes are now latched into the data EBB.

Using its SDOE0#, SDOE1# and SDOE2# outputs, the EBC now commands the
data EBB to drive the four latched bytes onto the four data paths. The EBC ac-
tivates the EX32# and EX16# lines at the midpoint of the current data time to
signal the end of data bus steering. At the trailing-edge of the current data
time, the 32-bit EISA bus master samples EX32# active, indicating that the nec-
essary steering has been completed. The bus master can begin to drive the ad-
dress for the next bus cycle onto the buses at the midpoint of the next data
time. The current bus cycle completes at the end of this last data time. Since this

EISA System Architecture

148

is a read bus cycle, the bus master reads the four bytes from the four data paths
when the EBC deactivates CMD#, ending the bus cycle.

In the second example, the bus master is initiating a 32-bit write to a 16-bit
ISA slave. The 32-bit bus master begins the bus cycle by placing the double-
word address on LA[31:2], setting M/IO# to the appropriate state, and activat-
ing all four byte enable lines, BE#[3:0]. The bus master sets the W/R# bus cycle
definition line high to indicate a write is in progress and activates the START#
signal to indicate that the bus cycle has begun. At the midpoint of address time,
the bus master begins to drive the four bytes onto the four EISA data paths.

At the end of address time, which is one BCLK cycle in duration, the following
events occur:

• The 32-bit bus master deactivates START# and the EBC activates CMD#.
• Using its four SDHDLEx# outputs, the EBC causes the data EBB to latch the

four data bytes being driven onto the four EISA data paths by the bus mas-
ter.

• The bus master samples the EX32# line to see if a 32-bit EISA slave is re-
sponding.

When the bus master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an
8 or 16-bit host slave, EX32# will not be returned active. Since a 16-bit ISA slave
is being addressed in this example, EX32# is not sampled active by the bus
master. At the end of address time, the EBC also samples EX32#, as well as
EX16#, M16# and IO16# to determine the size and type of slave device that is
responding. Since either M16# or IO16# is sampled active, the EBC determines
that the bus master is currently addressing a 16-bit ISA slave. Upon determin-
ing that the addressed slave is not connected to all four data paths, the bus
master assumes that the EBC and EBB will take care of any data bus steering
that may be necessary to accomplish the transfer. In order to let the EBC and
EBB use the buses for steering, the bus master disconnects from the four data
paths, the byte enable lines and the START# signal at midpoint of data time.
The bus master continues to drive the doubleword address onto LA[31:2],
however, as well as M/IO# and W/R#. The bus master then samples the state
of the EX32# line at the end of each data time until it is sampled active. During
this period of time, data bus steering is being performed by the EBC and EBB.
The EBC converts the M/IO# and W/R# settings to an active level on either the
IOWC#, SMWTC# or MWTC# bus cycle definition line on the ISA portion of
the bus. The EBC also converts the active level on the byte enable lines to zeros
on SA0 and SA1 and a low on SBHE#. Using its SDOE0# and SDOE1# outputs,
the EBC causes the data EBB to drive the bytes latched in its path zero and one

Chapter 12: Intel 82350DT EISA Chipset

149

latches onto EISA data paths zero and one. The addressed 16-bit ISA slave re-
sponds to the write and accepts the two bytes from the EISA data paths zero
and one, SD[7:0] and SD[15:8]. The EBC monitors NOWS# and CHRDY to de-
termine when the slave is ready to end the transfer. The EBC deactivates
CMD#, SDOE0# and SDOE1#, causing the data EBB to cease driving the two
bytes onto EISA data paths zero and one.

The EBC increments the address by setting SA0 to a zero, SA1 to a one and
SBHE# active. The EBC tricks the addressed slave into thinking a new bus cycle
has begun by generating START#, followed by CMD#, causing the appropriate
ISA command line to be deactivated and then activated again. Using its
SDCPYUP, SDCPYEN02#, SDCPYEN13# and SDOE2# output signals, the EBC
causes the data EBB to drive the two bytes latched in its path two and three
latches onto paths two and three and copies them down to EISA data paths
zero and one. The 16-bit ISA slave then accepts the two bytes from EISA data
paths zero and one, SD[7:0] and SD[15:8]. The EBC again monitors NOWS# and
CHRDY to determine when the slave is ready to end the transfer. All four of
the four data bytes have been written to the target 16-bit ISA slave. The EBC
deactivates CMD#, SDCPYEN02#, SDCPYEN13# and SDOE2#, causing the
data EBB to cease driving the two bytes onto EISA data paths two and three
and turning off the EBB's two copy transceivers.

The EBC activates the EX32# and EX16# lines at the midpoint of the current
data time to signal the end of data bus steering. At the trailing-edge of the cur-
rent data time, the 32-bit EISA bus master samples EX32# active, indicating that
the necessary steering has been completed. The bus master can begin to drive
the address for the next bus cycle onto the buses at the midpoint of the next
data time. The current bus cycle completes at the end of this last data time.
Since this is a write bus cycle, the bus master ends the bus cycle when the EBC
deactivates CMD#.

EISA System Architecture

150

Transfer Between 32-bit EISA Bus Master and
16-bit EISA Slave

Two examples are described in the following paragraphs: a 32-bit read from
the 16-bit EISA slave; and a 32-bit write to a 16-bit EISA slave. Refer to figure
12-4 during the discussion.

In the first example, the bus master is initiating a 32-bit read from a 16-bit
EISA slave. The 32-bit bus master begins the bus cycle by placing the double-
word address on LA[31:2], setting M/IO# to the appropriate state, and activat-
ing all four byte enable lines, BE#[3:0]. The bus master sets the W/R# bus cycle
definition line low to indicate a read is in progress and activates the START#
signal to indicate that the bus cycle has begun.

At the end of address time, which is one BCLK cycle in duration, the 32-bit bus
master deactivates START#, the EBC activates CMD# and the bus master sam-
ples the EX32# line to see if a 32-bit EISA slave is responding. When the bus
master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 8 or 16-bit
host slave, EX32# will not be returned active. Since a 16-bit EISA slave is being
addressed in this example, EX32# is not sampled active by the bus master. At
the end of address time, the EBC also samples EX32#, as well as EX16#, M16#
and IO16# to determine the size and type of slave device that is responding.
Since EX16# is sampled active, the EBC determines that the bus master is cur-
rently addressing a 16-bit EISA slave. Upon determining that the addressed
slave is not connected to all four data paths, the bus master assumes that the
EBC and EBB will take care of any data bus steering that may be necessary to
accomplish the transfer. In order to let the EBC and EBB use the buses for steer-
ing, the bus master disconnects from the four data paths, the byte enable lines
and the START# signal at midpoint of data time. The bus master continues to
drive the doubleword address onto LA[31:2], however, as well as M/IO# and
W/R#. The bus master then samples the state of the EX32# line at the end of
each data time until it is sampled active. During this period of time, data bus
steering is being performed by the EBC and EBB.

The active level on BE0# and BE1# indicates to the addressed 16-bit EISA slave
that a 16-bit transfer is in progress involving the first two locations in the cur-
rently addressed doubleword. The addressed 16-bit EISA slave responds to the
read and drives the byte from the even-addressed location onto the EISA data
path zero, SD[7:0], and the byte from the odd-addressed location onto EISA
data path one, SD[15:8]. The EBC monitors EXRDY to determine when the
slave is ready to end the transfer and then latches the two bytes into the path

Chapter 12: Intel 82350DT EISA Chipset

151

zero and path one latches in the data EBB using the EBC's SDHDLE0# and
SDHDLE1# output signals. The EBC deactivates CMD#.

The EBC now addresses the last two bytes in the addressed doubleword by ac-
tivating BE2# and BE3# and deactivating BE0# and BE1#. The EBC then tricks
the addressed slave into thinking a new bus cycle has begun by generating
START# again, followed by CMD#. The 16-bit EISA slave then drives the byte
from the even-addressed location onto EISA data path zero, SD[7:0], and the
byte from the odd-addressed location onto EISA data path one. The EBC again
monitors EXRDY to determine when the slave is ready to end the transfer. The
EBC then copies the two bytes on paths zero and one to data paths two and
three and latches them into the data EBB's path two and three data latches. This
is accomplished by activating the EBC's SDCPYEN02#, SDCPYEN13# and
SDCPYUP output signals to copy the byte from path zero to path two, the byte
from path one to path three, and then latching the bytes into the path two and
three latches in the data EBB using the EBC's SDHDLE2# and SDHDLE3# out-
put signals. All four of the requested data bytes are now latched into the data
EBB.

Using its SDOE0#, SDOE1# and SDOE2# outputs, the EBC now commands the
data EBB to drive the four latched bytes onto the four data paths. The EBC ac-
tivates the EX32# and EX16# lines at the midpoint of the current data time to
signal the end of data bus steering. At the trailing-edge of the current data
time, the 32-bit EISA bus master samples EX32# active, indicating that the nec-
essary steering has been completed. The bus master can begin to drive the ad-
dress for the next bus cycle onto the buses at the midpoint of the next data
time. The current bus cycle completes at the end of this last data time. Since this
is a read bus cycle, the bus master reads the four bytes from the four data paths
when the EBC deactivates CMD#, ending the bus cycle.

In the second example, the bus master is initiating a 32-bit write to a 16-bit
EISA slave. The 32-bit EISA bus master begins the bus cycle by placing the
doubleword address on LA[31:2], setting M/IO# to the appropriate state, and
activating all four byte enable lines, BE#[3:0]. The bus master sets the W/R#
bus cycle definition line high to indicate a write is in progress and activates the
START# signal to indicate that the bus cycle has begun. At the midpoint of ad-
dress time, the bus master begins to drive the four bytes onto the four EISA
data paths.

At the end of address time, which is one BCLK cycle in duration, the following
events occur:
• The 32-bit bus master deactivates START# and the EBC activates CMD#.

EISA System Architecture

152

• Using its four SDHDLEx# outputs, the EBC causes the data EBB to latch the
four data bytes being driven onto the four EISA data paths by the bus mas-
ter.

• The bus master samples the EX32# line to see if a 32-bit EISA slave is re-
sponding.

When the bus master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an
8 or 16-bit host slave, EX32# will not be returned active. Since a 16-bit EISA
slave is being addressed in this example, EX32# is not sampled active by the
bus master. At the end of address time, the EBC also samples EX32#, as well as
EX16#, M16# and IO16# to determine the size and type of slave device that is
responding. Since EX16# is sampled active, the EBC determines that the bus
master is currently addressing a 16-bit EISA slave. Upon determining that the
addressed slave is not connected to all four data paths, the bus master assumes
that the EBC and EBB will take care of any data bus steering that may be neces-
sary to accomplish the transfer. In order to let the EBC and EBB use the buses
for steering, the bus master disconnects from the four data paths, the byte en-
able lines and the START# signal at midpoint of data time. The bus master con-
tinues to drive the doubleword address onto LA[31:2], however, as well as
M/IO# and W/R#. The bus master then samples the state of the EX32# line at
the end of each data time until it is sampled active. During this period of time,
data bus steering is being performed by the EBC and EBB.

The active level on BE0# and BE1# indicates to the addressed 16-bit EISA slave
that a 16-bit transfer is in progress involving the first two locations in the cur-
rently addressed doubleword. Using its SDOE0# and SDOE1# outputs, the EBC
causes the data EBB to drive the bytes latched in its path zero and one latches
onto EISA data paths zero and one. The addressed 16-bit EISA slave responds
to the write and accepts the two bytes from the EISA data paths zero and one,
SD[7:0] and SD[15:8]. The EBC monitors EXRDY to determine when the slave is
ready to end the transfer. The EBC deactivates CMD#, SDOE0# and SDOE1#,
causing the data EBB to cease driving the two bytes onto EISA data paths zero
and one.

The EBC now addresses the last two bytes in the addressed doubleword by ac-
tivating BE2# and BE3# and deactivating BE0# and BE1#. The EBC tricks the
addressed slave into thinking a new bus cycle has begun by generating
START#, followed by CMD#. Using its SDCPYUP, SDCPYEN02#,
SDCPYEN13# and SDOE2# output signals, the EBC causes the data EBB to
drive the two bytes latched in its path two and three latches onto paths two and
three and copies them down to EISA data paths zero and one. The 16-bit EISA
slave then accepts the two bytes from EISA data paths zero and one, SD[7:0]

Chapter 12: Intel 82350DT EISA Chipset

153

and SD[15:8]. The EBC again monitors EXRDY to determine when the slave is
ready to end the transfer. All four of the four data bytes have been written to
the target 16-bit EISA slave. The EBC deactivates CMD#, SDCPYEN02#,
SDCPYEN13# and SDOE2#, causing the data EBB to cease driving the two
bytes onto EISA data paths two and three and turning off the EBB's two copy
transceivers.

The EBC activates the EX32# and EX16# lines at the midpoint of the current
data time to signal the end of data bus steering. At the trailing-edge of the cur-
rent data time, the 32-bit EISA bus master samples EX32# active, indicating that
the necessary steering has been completed. The bus master can begin to drive
the address for the next bus cycle onto the buses at the midpoint of the next
data time. The current bus cycle completes at the end of this last data time.
Since this is a write bus cycle, the bus master ends the bus cycle when the EBC
deactivates CMD#.

Transfer Between 32-bit EISA Bus Master and
32-bit EISA Slave

Two examples are described in the following paragraphs: a 32-bit read from
the 32-bit EISA slave; and a 32-bit write to a 32-bit EISA slave. Refer to figure
12-4 during the discussion.

In the first example, the bus master is initiating a 32-bit read from a 32-bit
EISA slave. The 32-bit bus master begins the bus cycle by placing the double-
word address on LA[31:2], setting M/IO# to the appropriate state, and activat-
ing all four byte enable lines, BE#[3:0]. The bus master sets the W/R# bus cycle
definition line low to indicate a read is in progress and activates the START#
signal to indicate that the bus cycle has begun.

At the end of address time, which is one BCLK cycle in duration, the 32-bit bus
master deactivates START#, the EBC activates CMD# and the bus master sam-
ples the EX32# line to see if a 32-bit EISA slave is responding. When the bus
master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 8 or 16-bit
host slave, EX32# will not be returned active. Since a 32-bit EISA slave is being
addressed in this example, EX32# is sampled active by the bus master. At the
end of address time, the EBC also samples EX32#, as well as EX16#, M16# and
IO16# to determine the size and type of slave device that is responding. Since
EX32# is sampled active, the EBC determines that the bus master is currently
addressing a 32-bit EISA slave. Upon determining that the addressed slave is
connected to all four data paths, the bus master recognizes that the EBC and
EBB will not have to perform data bus steering.

EISA System Architecture

154

The active level on all four byte enable lines indicates to the addressed 32-bit
EISA slave that a 32-bit transfer is in progress involving all four locations in the
currently addressed doubleword. The addressed 32-bit EISA slave responds to
the read and drives the four bytes onto their respective EISA data paths. The
bus master monitors EXRDY to determine when the slave is ready to end the
transfer and latches the four bytes when the EBC deactivates CMD#.

In the second example, the bus master is initiating a 32-bit write to a 32-bit
EISA slave. The 32-bit EISA bus master begins the bus cycle by placing the
doubleword address on LA[31:2], setting M/IO# to the appropriate state, and
activating all four byte enable lines, BE#[3:0]. The bus master sets the W/R#
bus cycle definition line high to indicate a write is in progress and activates the
START# signal to indicate that the bus cycle has begun. At the midpoint of ad-
dress time, the bus master begins to drive the four bytes onto the four EISA
data paths.

At the end of address time, which is one BCLK cycle in duration, the following
events occur:

• The 32-bit bus master deactivates START# and the EBC activates CMD#.
• The bus master samples the EX32# line to see if a 32-bit EISA slave is re-

sponding.

When the bus master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an
8 or 16-bit host slave, EX32# will not be returned active. Since a 32-bit EISA
slave is being addressed in this example, EX32# is sampled active by the bus
master. At the end of address time, the EBC also samples EX32#, as well as
EX16#, M16# and IO16# to determine the size and type of slave device that is
responding. Since EX32# is sampled active, the EBC determines that the bus
master is currently addressing a 32-bit EISA slave. Upon determining that the
addressed slave is connected to all four data paths, the bus master recognizes
that the EBC and EBB will not have to perform data bus steering.

The active level on the four byte enable lines indicates to the addressed 32-bit
EISA slave that a 32-bit transfer is in progress involving all four locations in the
currently addressed doubleword. The addressed 32-bit EISA slave responds to
the write and accepts the four bytes from EISA data paths zero through three.
The bus master monitors EXRDY to determine when the slave is ready to end
the transfer. Since this is a write bus cycle, the bus master ends the bus cycle
when the EBC deactivates CMD#.

Chapter 12: Intel 82350DT EISA Chipset

155

Transfer Between 32-bit EISA Bus Master and
32-bit Host Slave

It should be noted that all host bus slaves are 32-bit devices. In this example,
assume that a 32-bit EISA bus master initiates a bus cycle to read two bytes of
data from an 32-bit host slave. Assume also that they are the first two bytes in
the addressed doubleword. The 32-bit EISA bus master begins the bus cycle by
placing the doubleword address on LA[31:2], setting M/IO# to the appropriate
state, and activating byte enable lines BE0# and BE1#. The bus master sets the
W/R# bus cycle definition line low to indicate a read is in progress and acti-
vates the START# signal to indicate that the bus cycle has begun.

The EBC determines that a 32-bit EISA bus master has initiated the bus cycle
using the criteria in table 12-3. HHLDA, Host Hold Acknowledge, is inactive,
indicating that the host CPU is not the bus master. EXMASTER# is active and
MASTER16# is inactive, indicating that a 32-bit EISA bus master is using the
buses. The EBC determines that a host slave is responding by sampling either
HLOCMEM# or HLOCIO# active. Having already determined that the bus cy-
cle was initiated by an EISA bus master, the EBC generates EX32# to inform the
bus master that a 32-bit device is responding.

At the end of address time, which is one BCLK cycle in duration, the 32-bit bus
master deactivates START#, the EBC activates CMD# and the bus master sam-
ples the EX32# line to see if a 32-bit EISA slave is responding. When the bus
master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 8 or 16-bit
host slave, EX32# will not be returned active. Since a 32-bit slave is being ad-
dressed in this example, EX32# is sampled active by the bus master. Upon de-
termining that the addressed slave is connected to all four data paths, the bus
master recognizes that the EBC and EBB will not have to perform data bus
steering.

The EBC propagates the state of the EISA byte enable lines through to the host
byte enable lines, HBE#[3:0]. The active level on byte enable lines HBE0# and
HBE1# indicates to the addressed 32-bit host slave that a 16-bit transfer is in
progress involving the first two locations in the currently addressed double-
word. The addressed 32-bit host slave responds to the read and drives the two
requested bytes onto their respective EISA data paths, HD[7:0] and HD[15:8].
The EBC causes the data EBB to latch the two bytes by activating its
HDSDLE1# output. It then gates the two latched bytes onto paths zero and one
of the EISA data bus by activating its SDOE0# and SDOE1# outputs.
The bus master monitors EXRDY to determine when the slave is ready to end
the transfer and then latches the two bytes when the EBC deactivates CMD#.

EISA System Architecture

156

Transfer Between 16-bit EISA Bus Master and 8-bit ISA Slave

This example assumes that a 16-bit EISA bus master is writing two bytes to the
first two locations of a doubleword located within an 8-bit ISA slave. When the
16-bit EISA bus master initiates a bus cycle, it performs the following functions:

• Drives the MASTER16# line active to inform the EBC that a 16-bit bus mas-

ter has initiated the bus cycle.
• Drives the doubleword address onto LA[31:2] and sets the M/IO# line to

the appropriate state.
• Drives the START# signal active.
• sets W/R# and the byte enable lines to the appropriate states.
• During a write transfer, the bus master starts to drive data onto EISA data

path zero and/or path one at the midpoint of address time.

At the trailing-edge of address time, the bus master deactivates START# and
the EBC activates CMD# to indicate the beginning of data time. The bus master
samples EX16# and EX32# to determine if the currently addressed device is at-
tached to at least the lower two data paths. Since this example assumes that the
bus master is addressing an 8-bit ISA slave, neither EX16# nor EX32# will be
sampled active. Upon determining that the addressed slave is not connected to
the lower two EISA data paths, the bus master assumes that the EBC and EBB
will take care of any data bus steering that may be necessary to accomplish the
transfer. Using its SDHDLE0# and SDHDLE1# outputs, the EBC causes the
data EBB to latch the two bytes being driven onto EISA data paths zero and one
by the bus master.

In order to let the EBC and EBB use the buses for steering, the bus master dis-
connects from the two data paths, the byte enable lines and the START# signal
at the midpoint of data time. The bus master continues to drive the double-
word address onto LA[31:2], however, as well as M/IO# and W/R#. The bus
master then samples the state of the EX16# line at the end of each data time un-
til it is sampled active. During this period of time, data bus steering is being
performed by the EBC and EBB.

When the EBC determines that an ISA device is responding, the EBC converts
M/IO# and W/R# to an active level on one of the following ISA bus cycle defi-
nition signals:

• IORC#
• IOWC#
• MRDC#

Chapter 12: Intel 82350DT EISA Chipset

157

• MWTC#
• SMRDC#
• SMWTC#

In this example, either the IOWC#, MWTC# or SMWTC# line would be acti-
vated by the EBC. The EBC also converts the setting on the EISA byte enable
lines to the appropriate setting on SA0, SA1 and SBHE#. In this case, the active
level on BE0# and BE1# would be converted to a low on SA0, SA1 and SBHE#
on the ISA address bus, indicating that the bus master is addressing an even lo-
cation and the next sequential odd location and will use the lower two data
paths to transfer the two bytes. When the bus master has disconnected from the
data bus, START# and the byte enable lines at the midpoint of data time, the
EBC initiates the necessary data bus steering.

Using its SDOE0# output, the EBC causes the data byte latched into the data
EBB's path zero latch to be driven onto path zero, SD[7:0]. This byte is written
into the even-addressed location within the target 8-bit ISA slave. The EBC
monitors NOWS# and CHRDY to determine when the slave is ready to end the
transfer. The EBC then deactivates CMD# and SDOE0#, causing the data EBB
to cease driving the byte onto EISA data path zero.

Having completed the transfer of the first of the four bytes, the EBC increments
the address by setting SA0 to a one, SA1 to a zero and SBHE# active. The EBC
then tricks the addressed slave into thinking a new bus cycle has begun by
generating START# again, followed by CMD#, causing the appropriate ISA
command line to be deactivated and then activated again. Using its SDCPYUP,
SDCPYEN01# and SDOE1# output signals, the EBC causes the data EBB to
drive the byte latched in its path one latch onto path one and copies it down to
EISA data path zero. The 8-bit ISA slave then accepts the byte from EISA data
path zero, SD[7:0]. The EBC again monitors NOWS# and CHRDY to determine
when the slave is ready to end the transfer. Both data bytes have now been
written to the target 8-bit ISA slave. The EBC deactivates CMD#, SDCPYEN01#
and SDOE1#, causing the data EBB to cease driving the byte onto EISA data
path one and turning off the EBB's copy transceiver.

The EBC activates the EX32# and EX16# lines at the midpoint of the current
data time to signal the end of data bus steering. At the trailing-edge of the cur-
rent data time, the 16-bit EISA bus master samples EX16# active, indicating that
the necessary steering has been completed. The bus master can begin to drive
the address for the next bus cycle onto the buses at the midpoint of the next
data time. The current bus cycle completes at the end of this last data time.

EISA System Architecture

158

Since this is a write bus cycle, the bus master ends the bus cycle when the EBC
deactivates CMD#.

Transfer Between 16-bit EISA Bus Master and
16-bit ISA Slave

This example assumes that a 16-bit EISA bus master is reading two bytes from
the last two locations of a doubleword located within a 16-bit ISA slave. When
the 16-bit EISA bus master initiates a bus cycle, it performs the following func-
tions:

• drives the MASTER16# line active to inform the EBC that a 16-bit bus mas-

ter has initiated the bus cycle.
• drives the doubleword address onto LA[31:2] and sets the M/IO# line to

the appropriate state.
• drives the START# signal active.
• sets W/R# and the byte enable lines to the appropriate states. In this exam-

ple, W/R# is set low, indicating a read, and BE2# and BE3# are set active.

At the trailing-edge of address time, the bus master deactivates START# and
the EBC activates CMD# to indicate the beginning of data time. The bus master
samples EX16# and EX32# to determine if the currently addressed device is at
least attached to the lower two data paths and supports EISA bus cycle timing.
Since this example assumes that the bus master is addressing a 16-bit ISA slave,
neither EX16# nor EX32# will be sampled active. The EBC will, however, sam-
ple either M16# or IO16# active indicating a 16-bit ISA slave is responding.
Upon determining that the addressed slave is not capable of responding to
EISA bus cycle timing, the bus master assumes that the EBC and EBB will take
care of any data bus steering that may be necessary to accomplish the transfer.
In this particular example, a 16-bit EISA bus master is communicating with a
16-bit ISA slave. Since both devices are connected to EISA data paths zero and
one, no steering is actually necessary. The bus master, however, having no in-
dication as to whether the addressed ISA slave is an 8 or 16-bit device, assumes
that steering may be necessary and surrenders the data bus, byte enable lines
and START# to the EBC's control. This is done at the midpoint of data time.
The bus master continues to drive the doubleword address onto LA[31:2],
however, as well as M/IO# and W/R#. The bus master then samples the state
of the EX16# line at the end of each data time until it is sampled active. During
this period of time, data bus steering is being performed by the EBC and EBB.

Chapter 12: Intel 82350DT EISA Chipset

159

When the EBC determines that an ISA device is responding, the EBC converts
M/IO# and W/R# to an active level on one of the following ISA bus cycle defi-
nition signals:

• IORC#
• IOWC#
• MRDC#
• MWTC#
• SMRDC#
• SMWTC#

In this example, either the IORC#, MRDC# or SMRDC# line would be activated
by the EBC. The EBC also converts the setting on the EISA byte enable lines to
the appropriate setting on SA0, SA1 and SBHE#. In this case, the active level on
BE2# and BE3# would be converted to a low on SA0, and SBHE# and a high on
SA1 on the ISA address bus, indicating that the bus master is addressing an
even location and the next sequential odd location and will use the lower two
data paths to transfer the two bytes.

The 16-bit ISA device returns the two requested data bytes on EISA data paths
zero and one and the EBC activates EX16# to inform the bus master that it may
resume control of the bus cycle. The EBC monitors NOWS# and CHRDY to de-
termine when the slave is ready to end the transfer. The EBC then deactivates
CMD# and the bus master reads the two bytes from EISA data paths zero and
one when CMD# goes inactive.

EISA System Architecture

160

Transfer Between 16-bit EISA Bus Master and
16-bit EISA Slave

This example assumes that a 16-bit EISA bus master is reading two bytes from
the last two locations of a doubleword located within a 16-bit EISA slave. When
the 16-bit EISA bus master initiates a bus cycle, it performs the following func-
tions:

• Drives the MASTER16# line active to inform the EBC that a 16-bit bus mas-

ter has initiated the bus cycle.
• Drives the doubleword address onto LA[31:2] and sets the M/IO# line to

the appropriate state.
• Drives the START# signal active.
• Drives W/R# and the byte enable lines to the appropriate states. In this ex-

ample, W/R# is set low, indicating a read, and BE2# and BE3# are set ac-
tive.

At the trailing-edge of address time, the bus master deactivates START# and
the EBC activates CMD# to indicate the beginning of data time. The bus master
samples EX16# and EX32# to determine if the currently addressed device is at
least attached to the lower two data paths and supports EISA bus cycle timing.
Since this example assumes that the bus master is addressing a 16-bit EISA
slave, EX16# will be sampled active. The EBC will also sample EX16# active,
indicating a 16-bit EISA slave is responding. Upon determining that the ad-
dressed slave is capable of responding to EISA bus cycle timing, the bus master
assumes that no data bus steering will be necessary to accomplish the transfer.
In this particular example, a 16-bit EISA bus master is communicating with a
16-bit EISA slave. Since both devices are connected to EISA data paths zero and
one, no steering is necessary.

Using the active level on BE2# and BE3# to determine the requested bytes, the
16-bit EISA device returns the two requested data bytes on EISA data paths
zero and one. The EBC monitors EXRDY to determine when the slave is ready
to end the transfer. The EBC then deactivates CMD# and the bus master reads
the two bytes from EISA data paths zero and one when CMD# goes inactive.

Transfer Between 16-bit EISA Bus Master and
32-bit EISA Slave

This example assumes that a 16-bit EISA bus master is reading two bytes from
the last two locations of a doubleword located within a 32-bit EISA slave. When

Chapter 12: Intel 82350DT EISA Chipset

161

the 16-bit EISA bus master initiates a bus cycle, it performs the following func-
tions:

• drives the MASTER16# line active to inform the EBC that a 16-bit bus mas-

ter has initiated the bus cycle.
• drives the doubleword address onto LA[31:2] and sets the M/IO# line to

the appropriate state.
• drives the START# signal active.
• sets W/R# and the byte enable lines to the appropriate states. In this exam-

ple, W/R# is set low, indicating a read, and BE2# and BE3# are set active.

At the trailing-edge of address time, the bus master deactivates START# and
the EBC activates CMD# to indicate the beginning of data time. The bus master
samples EX16# and EX32# to determine if the currently addressed device is at
least attached to the lower two data paths and supports EISA bus cycle timing.
Since this example assumes that the bus master is addressing a 32-bit EISA
slave, EX32# will be sampled active. The EBC will also sample EX32# active,
indicating a 32-bit EISA slave is responding. Upon determining that the ad-
dressed slave is capable of responding to EISA bus cycle timing, the bus master
assumes that no data bus steering will be necessary to accomplish the transfer.
In this particular example, a 16-bit EISA bus master is communicating with a
32-bit EISA slave. Since both devices are connected to EISA data paths zero and
one, no steering is necessary.

Using the active level on BE2# and BE3# to determine the requested bytes, the
32-bit EISA device returns the two requested data bytes on EISA data paths
two and three. Since the 16-bit EISA bus master expects to receive the two bytes
back on EISA data paths zero and one, the EBC must command the data EBB to
copy the two bytes from paths two and three to paths zero and one. This is ac-
complished by the EBC setting its SDCPYEN02# and SDCPYEN13# outputs ac-
tive and its SDCPYUP output low.

The 16-bit EISA bus master monitors EXRDY to determine when the slave is
ready to end the transfer. The EBC then deactivates CMD# and the bus master
reads the two bytes from EISA data paths zero and one when CMD# goes inac-
tive.

EISA System Architecture

162

Transfer Between 16-bit ISA Bus Master and 8-bit ISA Slave

When the 16-bit ISA bus master initiates a bus cycle, the Central Arbitration
Control in the ISP chip activates its EMSTR16# output to inform the EBC that a
16-bit ISA bus master is running a bus cycle. In addition, the ISA bus master
sets MASTER16# active to indicate that it is a 16-bit bus master. The bus master
places the address on SA[19:0], SBHE# and LA[23:17]. The EBC commands the
address EBB to bridge this address over to the EISA address bus on LA[31:2]
and the EBC converts SA0, SA1 and SBHE# to the correct setting on the EISA
byte enable lines.

In this example, assume the 16-bit ISA bus master is performing a two byte
write to an 8-bit ISA slave. The least significant bit of the address, SA0, would
therefore be zero and SBHE# would be low to address the even address and the
next sequential odd address as well. The bus master begins to drive the two
bytes of data onto SD[7:0] and SD[15:8] halfway through address time and ac-
tivates either the IOWC#, MWTC# or SMWTC# ISA bus cycle definition line
during data time. The EBC and the 16-bit ISA bus master recognize that an 8-
bit ISA slave is responding by sampling EX16#, EX32#, M16#, IO16#,
HLOCMEM# and HLOCIO# inactive. Since there is no way to get an ISA bus
master to temporarily float the data bus so the EBC and data EBB can perform
the two necessary transfers, it is up to the ISA bus master to recognize that it is
attempting to perform a 16-bit transfer with an 8-bit device and handle the
multiple transfers itself.

The ISA bus master monitors NOWS# and CHRDY to determine when the 8-bit
ISA slave is ready to end the transfer of the first byte over EISA data path zero.
It then ceases to drive the first byte onto path zero and copies the second byte
from path one, SD[15:8], to path zero, SD[7:0]. In addition, the ISA bus master
increments the address by setting SA0 to a one and tricks the slave into think-
ing a second bus cycle has been initiated by momentarily turning off the write
command line (IOWC#, MWTC# or SMWTC#) and then reactivating it. The
slave accepts the second byte. The master once again monitors NOWS# and
CHRDY to determine when the slave is ready to end the bus cycle. This com-
pletes the two byte transfer to the 8-bit ISA slave.

Transfer Between 16-bit ISA Bus Master and 16-bit ISA Slave

When the 16-bit ISA bus master initiates a bus cycle, the Central Arbitration
Control in the ISP chip activates its EMSTR16# output to inform the EBC that a
16-bit ISA bus master is running a bus cycle. In addition, the ISA bus master
sets MASTER16# active to indicate that it is a 16-bit bus master. The bus master

Chapter 12: Intel 82350DT EISA Chipset

163

places the address on SA[19:0], SBHE# and LA[23:17]. The EBC commands the
address EBB to bridge this address over to the EISA address bus on LA[31:2]
and the EBC converts SA0, SA1 and SBHE# to the correct setting on the EISA
byte enable lines.

In this example, assume the 16-bit ISA bus master is performing a two byte
write to a 16-bit ISA slave. The least significant bit of the address, SA0, would
therefore be zero and SBHE# would be low to address the even address and the
next sequential odd address as well. The bus master begins to drive the two
bytes of data onto SD[7:0] and SD[15:8] halfway through address time and ac-
tivates either the IOWC#, MWTC# or SMWTC# ISA bus cycle definition line
during data time. The EBC and the 16-bit ISA bus master recognize that a 16-bit
ISA slave is responding when it samples EX16#, EX32#, M16#, IO16#,
HLOCMEM# and HLOCIO# and senses either M16# or IO16# active.

The ISA bus master monitors NOWS# and CHRDY to determine when the 16-
bit ISA slave is ready to end the transfer of the two bytes over EISA data paths
zero and one. This completes the two byte transfer to the 16-bit ISA slave.

Transfer Between 16-bit ISA Bus Master and
16-bit EISA Slave

When the 16-bit ISA bus master initiates a bus cycle, the Central Arbitration
Control in the ISP chip activates its EMSTR16# output to inform the EBC that a
16-bit ISA bus master is running a bus cycle. In addition, the ISA bus master
sets MASTER16# active to indicate that it is a 16-bit bus master. The bus master
places the address on SA[19:0], SBHE# and LA[23:17]. The EBC commands the
address EBB to bridge this address over to the EISA address bus on LA[31:2]
and the EBC converts SA0, SA1 and SBHE# to the correct setting on the EISA
byte enable lines.

In this example, assume the 16-bit ISA bus master is performing a two byte
write to a 16-bit EISA slave. The least significant bit of the address, SA0, would
therefore be zero and SBHE# would be low to address the even address and the
next sequential odd address as well. The EBC translates this to an active level
on BE0# and BE1#. The EBC sets START# active during address time for the
benefit of EISA slaves. The bus master begins to drive the two bytes of data
onto SD[7:0] and SD[15:8] halfway through address time and activates either
the IOWC#, MWTC# or SMWTC# ISA bus cycle definition line during data
time. At the end of address time, the EBC sets CMD# active to indicate that it is
data transfer time. The EBC converts the active ISA bus cycle line to the correct
setting on the EISA bus cycle definition lines, M/IO# and W/R#. The EBC rec-

EISA System Architecture

164

ognizes that a 16-bit EISA slave is responding when it samples EX16#, EX32#,
M16#, IO16#, HLOCMEM# and HLOCIO# and senses EX16# active. If a mem-
ory bus cycle is in progress, the active level on EX16# is converted to an active
level on M16#. If an I/O bus cycle is in progress, the active level on EX16# is
converted to an active level on IO16#. This informs the ISA bus master that it is
conversing with a 16-bit device and data bus steering is therefore unnecessary.

If the addressed EISA slave requires additional time to complete the transfer, it
deactivates EXRDY until it is ready. The EBC converts EXRDY to CHRDY for
the benefit of the ISA bus master. The ISA bus master monitors NOWS# and
CHRDY to determine when the 16-bit EISA slave is ready to end the transfer of
the two bytes over EISA data paths zero and one. This completes the two byte
transfer to the 16-bit EISA slave.

Transfer Between 16-bit ISA Bus Master and
32-bit EISA Slave

In this example, assume that a 16-bit ISA bus master is writing two bytes of
data to the second word of a doubleword within a 32-bit EISA slave. The bus
master activates MASTER16# to inform the EBC that it is a 16-bit bus master.
The Central Arbitration Control in the ISP chip activates EMSTR16# to inform
the EBC that a 16-bit ISA bus master is performing a bus cycle.

The bus master places the address on SA[19:0], SBHE# and LA[23:17]. SA1 is
set high, SA0 low and SBHE# low. The EBC activates START# during address
time. EBC bridges this address across to the EISA address bus, LA[31:2], and
converts SA0, SA1 and SBHE# to an active level on BE2# and BE3#. The EBC
converts the active level on IOWC#, MWTC# or SMWTC# to the corresponding
setting on the EISA bus cycle definition lines, M/IO# and W/R#. The EBC also
deactivates START# and activates CMD# at the beginning of data transfer time.
The bus master drives the two bytes onto EISA data paths zero and one.
Using its SDCPYEN02#, SDCPYEN13# and SDCPYUP outputs, the EBC causes
the data EBB to copy the two bytes on paths zero and one to paths two and
three. The addressed 32-bit EISA slave is expecting to receive the two bytes on
the upper two data paths. The EBC monitors the EXRDY line to determine
when the 32-bit EISA slave is ready to end the bus cycle. It then deactivates
CMD#. The EISA slave latches the two data bytes from EISA data paths two
and three when CMD# goes high at the end of the bus cycle.
Transfer Between 32-bit Host CPU and 32-bit Host Slave

All host bus I/O and memory devices are 32-bit devices. The EBC recognizes
that the host CPU is performing a bus cycle when HHLDA, Host Hold Ac-

Chapter 12: Intel 82350DT EISA Chipset

165

knowledge, is inactive and HADS0# and HADS1# are set active. The HADSx#
lines are connected to the CPU's Host Address Status output. The host CPU
places the address on HA[31:2] and sets the host byte enable lines, HBE#[3:0],
to the appropriate state. The EBC causes the address EBB to broadcast the ad-
dress onto the EISA and ISA address buses. The host CPU indicates the type of
bus cycle on HM/IO#, HW/R# and HD/C#. When the host slave recognizes
that it is being addressed, it activates either HLOCIO# (host local IO) or
HLOCMEM# (host local memory).

Since the host CPU is communicating with a 32-bit slave on its own bus, the
EBC and the data EBB do not become involved in the bus cycle. In other words,
the data is not bridged over to the EISA/ISA bus.

Transfer Between 32-bit Host CPU and 8-bit ISA Slave

The EBC recognizes that the host CPU is performing a bus cycle when
HHLDA, Host Hold Acknowledge, is inactive and HADS0# and HADS1# are
set active. The HADSx# lines are connected to the CPU's Host Address Status
output. The host CPU places the address on HA[31:2] and sets the host byte
enable lines, HBE#[3:0], to the appropriate state. The EBC causes the address
EBB to broadcast the address onto the ISA and EISA address buses as well. In
this example, assume that the host CPU is writing two bytes to the 8-bit ISA
slave over host data paths one and two. This means that the host CPU is setting
BE1# and BE2# active. SA0 is set high, while SA1 and SBHE# are set low. The
host CPU indicates the type of bus cycle on HM/IO#, HW/R# and HD/C#.

Since an 8-bit ISA slave is being addressed, the EBC samples inactive levels on
M16#, IO16#, EX16#, EX32#, HLOCIO# and HLOCMEM#. The EBC latches the
two bytes into the path one and two latches in the data EBB using its
HDSDLE1# output. It then outputs the two bytes onto the EISA data bus by ac-
tivating its SDOE1# and SDOE2# outputs. The data byte on EISA data path one
is copied down to path zero when the EBC activates its SDCPYEN01# output
and sets SDCPYUP low. The EBC monitors NOWS# and CHRDY to determine
when the ISA slave is ready to end the byte transfer. The EBC turns off
SDCPYEN01# and SDOE1# to turn off the copy transceiver and the cause the
path one latch in the data EBB to stop outputting the first data byte.
Having completed the transfer of the first byte, the EBC then increments the
address on the ISA address bus by setting SA1 and SBHE# high and SA0 low.
The ISA slave is tricked into thinking another bus cycle is initiated by the EBC
momentarily turning off the IOWC# or MWTC# line and then reactivating it.
The EBC uses its SDCPYEN02# and SDCPYUP outputs to copy the second data
byte from EISA data path two to path zero. The EBC again monitors NOWS#

EISA System Architecture

166

and CHRDY to determine when the ISA slave is ready to end the byte transfer.
The EBC turns off SDCPYEN02# and SDOE2# to turn off the copy transceiver
and the cause the path two latch in the data EBB to stop outputting the second
data byte.

Both bytes have now been transferred to the 8-bit ISA slave. The EBC now acti-
vates HRDYO#, host ready output, to tell the host CPU that it's ok to end the
bus cycle.

Transfer Between 32-bit Host CPU and 16-bit ISA Slave

The EBC recognizes that the host CPU is performing a bus cycle when
HHLDA, Host Hold Acknowledge, is inactive and HADS0# and HADS1# are
set active. The HADSx# lines are connected to the CPU's Host Address Status
output. The host CPU places the address on HA[31:2] and sets the host byte
enable lines, HBE#[3:0], to the appropriate state. The EBC causes the address
EBB to broadcast the address onto the ISA and EISA address buses as well. In
this example, assume that the host CPU is writing two bytes to a 16-bit ISA
slave over host data paths two and three. This means that the host CPU is set-
ting BE2# and BE3# active. SA1 is set high, while SA0 and SBHE# are set low.
The host CPU indicates the type of bus cycle on HM/IO#, HW/R# and HD/C#.

Since a 16-bit ISA slave is being addressed, the EBC samples an active level on
M16# or IO16#. The EBC latches the two bytes into the path two and three
latches in the data EBB using its HDSDLE1# output. It then outputs the two
bytes onto the EISA data bus by activating its SDOE2# output. The data bytes
on EISA data paths two and three are copied down to paths zero and one when
the EBC activates its SDCPYEN02# and SDCPYEN13# outputs and sets
SDCPYUP low. The EBC monitors NOWS# and CHRDY to determine when the
ISA slave is ready to end the transfer. The EBC turns off SDCPYEN02#,
SDCPYEN13# and SDOE2# to turn off the copy transceiver and the cause the
path two and three latches in the data EBB to stop outputting the two data
bytes.

Both bytes have now been transferred to the 16-bit ISA slave. The EBC now ac-
tivates HRDYO#, host ready output, to tell the host CPU that it's ok to end the
bus cycle.

Transfer Between 32-bit Host CPU and 16-bit EISA Slave

The EBC recognizes that the host CPU is performing a bus cycle when
HHLDA, Host Hold Acknowledge, is inactive and HADS0# and HADS1# are

Chapter 12: Intel 82350DT EISA Chipset

167

set active. The HADSx# lines are connected to the CPU's Host Address Status
output. The host CPU places the address on HA[31:2] and sets the host byte
enable lines, HBE#[3:0], to the appropriate state. The EBC causes the address
EBB to broadcast the address onto the ISA and EISA address buses as well. In
this example, assume that the host CPU is writing two bytes to a 16-bit EISA
slave over host data paths two and three. This means that the host CPU is set-
ting BE2# and BE3# active. The EBC activates BE2# and BE3# on the EISA ad-
dress bus. The host CPU indicates the type of bus cycle on HM/IO#, HW/R#
and HD/C#.

Since a 16-bit EISA slave is being addressed, the EBC samples an active level on
EX16#. The EBC latches the two bytes into the path two and three latches in the
data EBB using its HDSDLE1# output. It then outputs the two bytes onto the
EISA data bus by activating its SDOE2# output. The data bytes on EISA data
paths two and three are copied down to paths zero and one when the EBC acti-
vates its SDCPYEN02# and SDCPYEN13# outputs and sets SDCPYUP low. The
EBC monitors EXRDY to determine when the EISA slave is ready to end the
transfer. The EBC turns off SDCPYEN02#, SDCPYEN13# and SDOE2# to turn
off the copy transceiver and the cause the path two and three latches in the
data EBB to stop outputting the two data bytes.

Both bytes have now been transferred to the 16-bit EISA slave. The EBC now
activates HRDYO#, host ready output, to tell the host CPU that it's ok to end
the bus cycle.

Transfer Between 32-bit Host CPU and 32-bit EISA Slave

The EBC recognizes that the host CPU is performing a bus cycle when
HHLDA, Host Hold Acknowledge, is inactive and HADS0# and HADS1# are
set active. The HADSx# lines are connected to the CPU's Host Address Status
output. The host CPU places the address on HA[31:2] and sets the host byte
enable lines, HBE#[3:0], to the appropriate state. The EBC causes the address
EBB to broadcast the address onto the ISA and EISA address buses as well. In
this example, assume that the host CPU is writing four bytes to a 32-bit EISA
slave using all four host data paths. This means that the host CPU is setting all
four host byte enable lines, HBE#[3:0], active. The EBC activates BE#[3:0] on the
EISA address bus. The host CPU indicates the type of bus cycle on HM/IO#,
HW/R# and HD/C#.
Since a 32-bit EISA slave is being addressed, the EBC samples an active level on
EX32#. The EBC latches the four bytes into the data EBB's data latches using its
HDSDLE1# output. It then outputs the four bytes onto the EISA data bus by ac-
tivating its SDOE0#, SDOE1# and SDOE2# outputs. The EBC monitors EXRDY

EISA System Architecture

168

to determine when the EISA slave is ready to end the transfer. The EBC turns
off SDOE0#, SDOE1# and SDOE2# to cause the four data EBB data latches to
stop outputting the four data bytes.

All four bytes have now been transferred to the 32-bit EISA slave. The EBC
now activates HRDYO#, host ready output, to tell the host CPU that it's ok to
end the bus cycle.

Address Buffer Control and EBB

Under the control of the EBC, the address EBB ensures that the address gener-
ated by the current bus master is seen by every host, EISA and ISA slave in the
system. Along with the address the state of the M/IO# bus cycle definition line
must be propagated onto the EISA and host address buses so EISA and host
slaves can discern memory addresses from I/O addresses. Table 12-4 defines
the EBC output signals used to control the address EBB. Figure 12-5 provides a
functional view of the address EBB and illustrates the linkage between the EBC
and the address EBB. The figure also illustrates the direction of address flow
through the three latching transceivers when the host CPU, an ISA master or an
EISA master is the bus master. Table 12-5 shows the state of each of the EBC's
address EBB control lines when each type of master is running a bus cycle. En-
tries designated as “transparent” indicate that the latch control line is left active
for the entire bus cycle, causing the respective latching transceiver to be trans-
parent.

Chapter 12: Intel 82350DT EISA Chipset

169

Table 12-4. EBC Output Signals Used to Control the Address EBB
Signal Description

HALAOE# When set active by the EBC, causes the address EBB's upper and
lower host/EISA latching transceivers to output the previously
latched host address onto the EISA LA bus. LA[23:2] and
LA#[31:24].

HALE# When set active by the EBC, causes the address EBB's upper and
lower host/EISA latching transceivers to latch the address on the
EISA LA bus, LA[31:2].

LASAOE# When set active by the EBC, causes the address EBB's EISA/ISA
latching transceiver to output the previously LA address onto the SA
bus, SA[19:2].

LAHAOE# When set active by the EBC, causes the address EBB's upper and
lower host/EISA latching transceivers to output the previously
latched EISA address onto the host address bus, HA[31:2].

LALE# When set active by the EBC, causes the address EBB's upper and
lower host/EISA latching transceivers to latch the address on the
host address bus, HA[31:2].

SALAOE# When set active by the EBC, causes the address EBB's EISA/ISA
latching transceiver to output the previously latched SA address
onto LA bus, bits LA[16:2].

SALE# When set active by the EBC, causes the address EBB to latch the ad-
dress on LA[19:2] into the EISA/ISA latching transceiver.

Table 12-5. Address EBB Control Line States

 Current Bus Master Type
Control

Line

Host CPU

EISA

ISA

DMA

Refresh

HALAOE# active inactive inactive active active
HALE# transparent transparent transparent transparent transparent
LASAOE# active active inactive active active
LAHAOE# inactive active active inactive inactive
LALE# pulsed to latch

HA bus
na na transparent transparent

SALAOE# inactive inactive active inactive inactive
SALE# pulsed to latch

LA into SA
latch

pulsed to latch
LA into SA
latch

transparent pulsed to latch
LA into SA
latch

pulsed to
latch LA into
SA latch

EISA System Architecture

170

Host CPU Bus Master

Refer to tables 12-5 and 12-4 and figure 12-5 while reading this description.
When the host CPU is bus master, the address on the host address bus,
HA[31:2], and the state of the HM/IO# bus cycle definition line must be propa-
gated onto the EISA address bus, consisting of LA[23:2], LA#[31:24] and
M/IO#, and the lower part of the ISA address bus, SA[19:2].

The pulse on LALE# causes the address EBB to latch the address from the host
bus. The active on HALAOE# and the steady active on HALE# gates latched
host address onto the EISA address bus, LA[23:2] and LA#[31:24]. It should be
noted that the upper Host/EISA Latching Transceiver inverts address bits
31:24. The pulse on SALE# latches LA[19:2] into the EISA/ISA Latching Trans-
ceiver, while the active on LASAOE# allows it to output the latched address
onto the SA bus, SA[19:2].

EISA Bus Master

Refer to tables 12-5 and 12-4 and figure 12-5 while reading this description.
When an EISA master is the bus master, the address on the EISA address bus,
LA[23:2] and LA#[31:24], and the state of the M/IO# bus cycle definition line
must be propagated onto the host address bus, consisting of HA[31:2] and
HM/IO#, and onto the lower part of the ISA address bus, SA[19:2].

The active on LAHAOE# and the steady active on HALE# allows the address
on the EISA address bus to flow onto the host address bus. The pulse on SALE#
causes the lower part of the EISA address, LA[19:2], to be latched into the
EISA/ISA latching transceiver, while the active on LASAOE# allows the
latched LA address to be driven onto the SA bus, SA[19:2].

ISA Bus Master

Refer to tables 12-5 and 12-4 and figure 12-5 while reading this description.
When an ISA master is the bus master, the address on the ISA address bus,
SA[19:2] and LA[23:17], must be propagated onto the host address bus,
HA[31:2], and onto the lower part of the EISA address bus, LA[23:2]. Since ISA
bus masters do not use LA#[31:24], pull-up resistors force these lines inactive
when an ISA bus master is placing an address on the address bus.

The steady active state of SALE# and the active state of SALAOE# allows the
portion of the ISA address on SA[16:2] to flow through the EISA/ISA latching
transceiver onto the lower part of the EISA address bus, LA[16:2]. The ISA bus

Chapter 12: Intel 82350DT EISA Chipset

171

master places address bits 23:17 directly onto LA[23:17] of the EISA/ISA ad-
dress bus. The active on LAHAOE# and the steady active state of HALE# per-
mits the address on the EISA address bus, LA[23:2] and LA#[31:24], to flow
through onto the host address bus, HA[31:2]. The ones on LA#[31:24] are in-
verted by the upper Host/EISA latching transceiver before being driven onto
HA[31:2]4.

Refresh Bus Master

Refer to tables 12-5 and 12-4 and figure 12-5 while reading this description. The
Refresh logic is located in the ISP chip. When the Refresh logic becomes bus
master and drives the next sequential row address onto the host address bus,
the row address must be propagated onto the EISA and ISA addresses buses as
well.

The active state of HALAOE# and the steady active state of LALE# allows the
row address to flow from the host address bus, HA[31:2], to the EISA address
bus, LA[31:2]. The pulse on SALE# latches the row address into the EISA/ISA
latching transceiver and the active state of LASAOE# causes the row address to
be driven onto the SA bus, SA[19:2]. The Refresh logic in the ISP also sets the
HM/IO# bus cycle definition line high to indicate that a memory row address
is on the bus. The EBC passes the state of the host bus HM/IO# line to the EISA
M/IO# line.

DMA Bus Master

Refer to tables 12-5 and 12-4 and figure 12-5 while reading this description. The
DMA controllers are located in the ISP chip and output a memory address onto
the host address bus, HA[31:2], when a DMA channel becomes bus master. The
HM/IO# line is also set high by the ISP to indicate that a memory address is
present on the bus. The EBC must command the address EBB to pass the mem-
ory address and the state of HM/IO# onto the EISA address bus, LA[23:2] and
LA#[31:24] plus M/IO#, and onto the ISA address bus, consisting of SA[19:2]
and LA[23:17].

The active state of HALAOE# and the steady active state of LALE# allows the
memory address on the host address bus, HA[31:2], to flow through the upper
and lower Host/EISA latching transceivers onto the EISA data bus, LA[23:2]
and LA#[31:24]. The pulse on SALE# latches the memory address on the host
address bus, HA[31:2], into the EISA/ISA latching transceiver and the active
state of LASAOE# allows the transceiver to drive it onto the SA bus, SA[19:2].

EISA System Architecture

172

Figure 12-5. Block Diagram of Address EBB

Host Bus Interface Unit

The host bus interface unit pictured in figure 12-2 observes bus cycles initiated
by the host CPU. If neither HLOCMEM# nor HLOCIO# are sensed active, the
host bus master is addressing a slave on the EISA or ISA bus. In this case, the
host bus interface unit commands either the EISA or ISA interface unit in the
EBC to run a bus cycle. The host bus interface unit awaits completion of the bus

SA2:SA19

LA2:LA23

LA24#:LA31#HA2:HA31

EISA/ISA
Latching

Transceiver

Lower
Host/EISA

Latching
Transceiver

Upper
Host/EISA

Latching
Transceiver

Bus Master Direction
Host
ISA
EISA

Bus Master Direction
Host
ISA
EISA

Bus Master Direction
Host
ISA
EISA

B3_OE#
B23_LE#
A_OE#

A_LE#

B012_OE#
B01_LE#

HALAOE#
LALE#
LAHAOE#
HALE#

LASAOE#
SALAOE#
SALE#

S_OE#
SB_OE#
S_LE#

HM/IO# M/IO#

Chapter 12: Intel 82350DT EISA Chipset

173

cycle and sends ready to the host CPU. Table 12-6 provides a description of the
host bus interface signals. The description of these signals assumes that the
EBC is configured for the 82350 environment. To configure the EBC for the
82350 environment, two conditions must be met:

• The AMODE input must be strapped low.
• The HNA#/SBMODE# input is sampled on the leading-edge of the

SPWROK input. To select the 82350 configuration, it must be sampled high.

Table 12-6. Host Interface Unit Signal Descriptions
Signal Direction Description

AMODE input Address Mode. Configures the EBC for 82350
mode when strapped low; for 82350DT mode when
strapped high.

HBE#[3:0] input/output Host Byte Enables. When the host CPU is bus mas-
ter, these inputs define the target location(s) within
the addressed doubleword. The EBC's ISA inter-
face unit converts them to SA0, SA1 and SBHE# on
the ISA address bus, while the EBC's EISA inter-
face unit converts them to BE#[3:0] on the EISA
address bus.
When an EISA bus master has initiated a bus cycle,
the state of the BE#[3:0] lines on the EISA address
bus are output onto the HBE#[3:0] lines on the host
address bus.
When an ISA bus master has initiated a bus cycle,
the state of the SA0, SA1 and SBHE# lines on the
ISA address bus are converted and output onto the
HBE#[3:0] lines on the host address bus.

HADS0# and
HADS1#

input Host Address Status 0 and 1. The host CPU or the
host cache controller's ADS# output is connected to
the HADS0# input. ADS# indicates that it is ad-
dress time and a valid address and bus cycle defi-
nition are present on the host bus. Some cache con-
trollers perform more than one fetch in order to fill
a cache line. In this case, the cache controller gen-
erates HADS0# when it initiates the bus cycle for
the first fetch. This triggers an state machine that
generates HADS1# when it initiates any subse-
quent bus cycles for the remaining fetches. Inter-
nally, these two input signals are “anded” together.

EISA System Architecture

174

HNA# output Host Next Address. In a system with a 386 host
CPU, this output is used to tell the 386 whether it
can output the address for the next bus cycle early.

HD/C# input/output Host Data or Control. Used as inputs when the
host CPU is bus master, as outputs when a device
other than the host CPU is bus master. In combina-
tion with HW/R# and HM/IO#, defines the bus
cycle type.

HW/R# input/output Host Write or Read. See HD/C#.
HM/IO# input/output Host Memory or I/O. See HD/C#.
HLOCK# input Host Lock. This input is connected to the host

CPU's LOCK# output. Will be active when the host
CPU is locking multiple bus cycles together to pre-
vent other bus masters from requesting the buses
until lock goes inactive.

HRDYI# input Host Ready Input. The host interface unit monitors
this signal to determine when a host-initiated bus
cycle has completed.

HRDYO# output Host Ready Output. When the host CPU is access-
ing an EISA or ISA slave, the host interface unit
activates HRDYO# to signal the end of the bus cy-
cle to the host CPU.

HERDYO# output Host Early Ready Output. This is an earlier ver-
sion of HRDYO# to be used with higher speed host
CPUs that require more setup time.

HHOLD output Host Hold Request. When the Central Arbitration
Control in the ISP chip must grant the buses to a
device other than the host CPU, it must first take
the buses away from the host CPU. To do this, the
ISP activates DHOLD. DHOLD causes the EBC's
host interface unit, in turn, to activate HHOLD to
seize the host bus from the host CPU. In response,
the host CPU surrenders the buses and activates
HHLDA, Host Hold Acknowledge. The EBC then
activates DHLDA to inform the Central Arbitration
Control in the ISP that it may grant the buses to
another device.

HHLDA input Host Hold Acknowledge. See HHOLD.

Table 12 - 6, cont. Table 12 - 6, cont.

Chapter 12: Intel 82350DT EISA Chipset

175

HLOCMEM# input Host Local Memory. This signal is set active by the
memory address decode logic when memory resid-
ing on the host bus is being addressed. If the cur-
rent bus master is the host CPU, this means that the
EBC does not have to activate the data EBB or run
a bus cycle on the ISA or EISA bus.

HLOCIO# input Host Local I/O. This signal is set active by the I/O
address decode logic when an I/O device residing
on the host bus is being addressed. If the current
bus master is the host CPU, this means that the
EBC does not have to activate the data EBB or run
a bus cycle on the ISA or EISA bus.

HGT16M# input Host Greater Than 16MB. This signal is only
driven by the ISP chip during DMA bus cycles. If
the DMA channel is generating a memory address
below 16MB (00000000h – 00FFFFFFh), HGT16M#
is high and the ISA interface unit will generate
MRDC# or MWTC#. For addresses above 16MB,
the MRDC# or MWTC# signals are not generated.
This is necessary because some DMA devices use
the ISA memory command signals to start a bus
cycle early.

PWEN# input Posted Write Enable. If sampled active at the be-
ginning of a host CPU memory write bus cycle to
an EISA or ISA memory slave, the EBC's host inter-
face unit causes the EBC's Data Buffer Control logic
to latch the write data into the data EBB. The host
interface unit then activates the HRDYO# signal to
let the host CPU end the memory write bus cycle.
The EBC's host interface unit, in conjunction with
either the ISA or EISA interface unit, then writes
the posted data to the target ISA or EISA memory
slave. This feature allows single host memory
writes to EISA or ISA memory to complete quickly.

EISA System Architecture

176

HSTRETCH# input Host Bus Stretch. This input can be used by host
bus slaves during EISA/ISA or DMA bus master
cycles to stretch the low part of BCLK during
CMD# (data time). This has the effect of stalling the
EISA/ISA master without adding BCLK wait
states.

HKEN# input Host Cache Enable. When sampled active, indi-
cates that the host CPU is requesting a cache line
fill operation.

ISA Bus Interface Unit

The ISA interface unit pictured in figure 12-2 observes bus cycles initiated by
ISA bus masters. The ISA bus interface unit awaits completion of the bus cycle.
If either the host CPU or an EISA bus master is addressing an ISA slave, the
ISA interface unit runs a bus cycle. When the bus cycle on the ISA bus is com-
pleted, EXRDY or HRDYO# is sent to the EISA or host bus master to terminate
the bus cycle. Table 12-7 provides a description of the ISA interface signals. For
a complete description of the ISA bus, refer to the MindShare book entitled ISA
System Architecture.

Table 12 - 6, cont.

Chapter 12: Intel 82350DT EISA Chipset

177

Table 12-7. ISA Interface Unit Signal Descriptions
Signal Direction Description

BALE output Bus Address Latch Enable. During an ISA bus cy-
cle, BALE is set high at the midpoint of address time
and dropped low at the end of address time. The
address is gated from the LA bus to the SA bus
when BALE goes high and is latch when BALE goes
low at the end of address time.

SA0, SA1,
BHE#

input/output Least-significant part of the ISA address bus. These
are inputs when the bus cycle is being run by an ISA
bus master and outputs when the bus cycle is being
run by an EISA or host master.

IORC# input/output The I/O Read Command line. Generated by an ISA
bus master when it is performing an I/O read bus
cycle. When an EISA or host bus master is perform-
ing an I/O read bus cycle, the EBC's ISA interface
unit generates this signal.

IOWC# input/output The I/O Write Command line. Generated by an ISA
bus master when it is performing an I/O write bus
cycle. When an EISA or host bus master is perform-
ing an I/O write bus cycle, the EBC's ISA interface
unit generates this signal.

MRDC# input/output The Memory Read Command line. Generated by
an ISA bus master when it is performing a memory
read bus cycle. When an EISA or host bus master is
performing a memory read bus cycle, the EBC's ISA
interface unit generates this signal.

MWTC# input/output The Memory Write Command line. Generated by
an ISA bus master when it is performing a memory
write bus cycle. When an EISA or host bus master is
performing a memory write bus cycle, the EBC's ISA
interface unit generates this signal.

SMRDC# output Standard Memory Read Command line. The EBC's
ISA interface unit generates this signal when any
bus master is reading from memory space in the
00000000h – 000FFFFFh range. A memory address
decoder located in the ISP chip generates GT1M#
whenever it detects a memory address in this range,
causing the ISP interface unit to generate either
SMRDC# or SMWTC#.

Table 12 - 7, cont.

EISA System Architecture

178

SMWTC# output Standard Memory Write Command line. The EBC's
ISA interface unit generates this signal when any
bus master is writing to memory space in the
00000000h – 000FFFFFh range. A memory address
decoder located in the ISP chip generates GT1M#
whenever it detects a memory address in this range,
causing the ISP interface unit to generate either
SMRDC# or SMWTC#.

IO16# input/output IO Size 16. Generated by a 16-bit ISA I/O slave
when addressed by a bus master. Set active by the
EBC's ISA interface unit when an ISA bus master is
addressing a host I/O slave (HLOCIO# sampled
active). EISA slaves that support ISA bus masters
must assert IO16# as well as EX16# or EX32# when
addressed.

M16# input Memory Size 16. Generated by a 16-bit ISA memory
slave when addressed by a bus master.

NOWS# input No Wait States. An ISA slave may generate NOWS#
when it has decoded its address and a read or write
command line has been activated. When set active
by the slave, it conditions the default ready timer (in
the ISA interface unit) to set ready active at the end
of the current BCLK. It is used to shorten the num-
ber of wait states appended to a bus cycle by the
default ready timer.

CHRDY input/output Channel Ready. If an ISA slave requires more time
to complete a bus cycle than allowed by the default
ready timer, it may set the CHRDY line low. This
prevents the default ready timer from timing out
until the slave is ready to end the bus cycle. When
the slave is ready to end the bus cycle, it sets
CHRDY active again, permitting the default ready
timer to time out.

REFRESH# input Generated by the Refresh logic in the ISP chip when
the Refresh logic is bus master and is performing a
refresh bus cycle.

MASTER16# input 16-bit Bus Master. Generated by either ISA or 16-bit
EISA bus master when it initiates a bus cycle.

Chapter 12: Intel 82350DT EISA Chipset

179

EISA Bus Interface Unit

The EISA interface unit pictured in figure 12-2 observes bus cycles initiated by
EISA bus masters. The EISA bus interface unit awaits completion of the bus cy-
cle. If either the host CPU or an ISA bus master is addressing an EISA slave, the
EISA interface unit runs a bus cycle. Table 12-8 provides a description of the
EISA interface signals. For a complete description of the EISA bus, refer to ear-
lier sections of this publication.

Table 12-8. EISA Interface Unit Signal Descriptions
Signal Direction Description

BE#[3:0] input/output Byte Enable lines. Set to the appropriate states during
a bus cycle initiated by an EISA bus master. When an
ISA master initiates a bus cycle, the EBC's EISA inter-
face unit converts SA0, SA1 and SBHE# to the corre-
sponding setting on the BE lines. When the host CPU
initiates a bus cycle, the state of the host byte enables
lines, HBE#[3:0], are passed onto the EISA byte enable
lines by the EBC.

M/IO# input/output Memory or I/O bus cycle definition line. Generated by
an EISA master or by the EBC when the host CPU or
an ISA master is performing a bus cycle.

W/R# input/output Write or Read bus cycle definition line. Generated by
an EISA master or by the EBC when the host CPU or
an ISA master is performing a bus cycle.

LOCK# output Generated by the EBC when the host CPU is bus mas-
ter and has asserted HLOCK# to the EBC. An active
level on the EISA LOCK# line prevents other bus mas-
ters from requesting the buses until LOCK# goes
away.

START# input/output Set active by an EISA bus master when it initiates a
bus cycle and deactivated at the end of address time.
Controlled by the EBC when an ISA master or the host
CPU is performing a bus cycle to signal the start of the
bus cycle on the EISA bus. Also controlled by the EBC
during DMA transfers and under some conditions
requiring data bus steering.

CMD# output Command. Set active by the EBC at the start of data
time and kept active until the end of the bus cycle.

Table 12 - 8, cont.

EISA System Architecture

180

EXRDY input/output EISA Ready. Set inactive by the currently addressed
EISA slave if it requires more time to complete a bus
cycle. Controlled by the EBC when an EISA bus mas-
ter is addressing an ISA or host slave and under some
conditions when data bus steering is necessary.

MSBURST# input/output Master Burst. Generated by an EISA or host master
(through the EBC) when the addressed slave has indi-
cated it supports burst bus cycles by asserting
SLBURST#. Set active by the EISA master or the EBC
at the midpoint of the first data time and sampled by
the slave at the end of the first data time.

SLBURST# input Slave Burst. Used by the currently addressed EISA
slave to indicate it supports burst bus cycles. Sampled
by the master at the end of address time.

EX32# input/output EISA Size 32. Generated by the currently addressed
slave if it is a 32-bit EISA slave. Generated by the EBC
at the end of data bus steering to signal return of bus
cycle control to the EISA bus master. Also generated
by the EBC if an EISA bus master addresses a host
slave (HLOCMEM# or HLOCIO# sampled active be
EBC).

EX16# input/output EISA Size 16. Generated by the currently addressed
slave if it is a 16-bit EISA slave. Generated by the EBC
at the end of data bus steering to signal return of bus
cycle control to the EISA bus master. Also generated
by the EBC if an EISA bus master addresses a host
slave (HLOCMEM# or HLOCIO# sampled active be
EBC).

Cache Support

The EBC provides two output signals to support bus snooping. HSSTRB# is
used in 386/82385 host CPU systems, while QHSSTRB# is used in 486 host
CPU systems. These signals indicate to a system cache controller that a bus
master is writing to system memory. The RDE#, or Ready Delay Enable, input
instructs the cache support unit in the EBC to add a wait state by delaying
HERDYO# and HRDYO# during a host to EISA/ISA read to allow increased
cache SRAM write data setup time during cache read miss bus cycles.

Reset Control

Chapter 12: Intel 82350DT EISA Chipset

181

Table 12-9 describes the signals associated with the EBC's Reset Control unit
(see figure 12-2).

Table 12-9. The EBC's Reset Control Interface Signals
Signal Direction Description

RST out System Reset. Remains active until 10 microseconds after
SPWROK goes active. Resets major system components to
a known state.

RSTCPU out Reset Host CPU. Driven active when: power isn't stable
(SPWROK inactive); a shutdown bus cycle is detected on
the host bus; or RSTAR# is sensed active. See RSTAR# de-
scription. RSTCPU resets just the host CPU.

RST385 out Reset 385 cache controller. Driven active under the same
conditions as RSTCPU. Resets the host bus cache control-
ler, clearing all tag valid bits. In other words, the cache is
flushed.

RSTAR# in Restart. Generated under software control by: issuing a
CPU reset command to the keyboard controller; or tog-
gling the fast hot reset bit in the PS/2 compatibility port at
I/O port 92h. Used by 286-specific code to reset the 286
and return it to real mode from protected mode.

SPWROK in System Power OK. Provided as an output from the power
supply. When inactive, the Reset Control unit sets
RSTCPU, RST385 and RST active.

Slot-Specific I/O Support

During I/O bus cycles, the EBC generates a pulse on the signal AENLE#, AEN
Latch Enable. This is used by the AEN logic to latch the active AENx line. For
more information on slot-specific I/O support and AEN decode, refer to the
chapter entitled “EISA System Configuration.”

Clock Generator Unit

Table 12-10 provides a description of the signals related to the EBC's Clock
Generator unit.

EISA System Architecture

182

Table 12-10. EBC's Clock Generation Unit Signal Description
Signals Direction Description

HCLKCPU in Host CPU Clock.
BCLK out Bus Clock. BCLK is generated by dividing the

HCLKCPU input clock by a factor determined by the
CPU[3:0] inputs. For a 25MHz 386 or 486 host CPU, the
BCLK frequency will be 8.33MHz. For a 33MHz 386 or
486, the BCLK frequency will be 8.25MHz.

CLKKB out Keyboard Clock. The EBC's Clock Generation unit pro-
vides an output clock for the keyboard controller. Its fre-
quency is derived by dividing the HCLKCPU input by a
factor determined by the CPU[3:0] inputs. If the host
CPU is a 25MHz 386, the CLKKB output frequency will
be 10MHz. If the host CPU is a 25MHz 486, the CLKKB
output frequency will be 8.33MHz. If the host CPU is a
33MHz 386 or 486, the CLKKB output frequency will be
11MHz.

BCLKIN in Bus Clock input. Allows the EBC to monitor the BCLK
signal.

I/O Recovery

The ISA bus's default ready timer built into the EBC automatically forces ac-
cesses to 8 or 16-bit ISA I/O devices to append one wait state to the bus cycle.
If a delay of longer than one wait state is desired, the signal LIOWAIT#, Long
I/O Wait, may be asserted to provide a maximum of eleven wait states when
accessing 8-bit ISA I/O slaves or three wait states when accessing 16-bit ISA
I/O slaves.

Testing

Normally pulled high with an external pullup resistor, an active level on the
TEST1# input causes the EBC to float all of its outputs except BCLK. This al-
lows a board tester to gain control of all of the output signal lines for testing
purposes.

Chapter 12: Intel 82350DT EISA Chipset

183

ISP interface unit

The ISP interface unit provides the interconnect between the EBC and the ISP
chip. For a description of the signals involved, refer to the next section.

82357 Integrated System Peripheral (ISP)

Introduction

The majority of the logic contained within the Integrated System Peripheral, or
ISP, was described in detail earlier in this publication and in the MindShare
book entitled ISA System Architecture. The information presented here is in-
tended as a summary of the functions present in the ISP. Where applicable,
signals indigenous to the ISP are described. Figure 12-6 provides a detailed
view of the major logic blocks contained within the ISP.

EISA System Architecture

184

Figure 12-6. The ISP Block Diagram

B
C

L
K

R
ST

ST
A

R
T

#
C

M
D

#
G

T
1M

#
R

ST
D

R
V

R
T

C
A

L
E

C
SO

U
T

#
D

R
D

Y
H

W
/

R
#

HA2:HA31

D0:D7

BE0#:BE3#

ST0:ST3

CHCHK#

PARITY#

IRQ0

IRQ1
IRQ3
IRQ4
IRQ5
IRQ6
IRQ7
IRQ8#
IRQ9
IRQ10
IRQ11
IRQ12
IRQ13
IRQ14
IRQ15

Chain Interrupt

IR
Q

2

DRQ7
DAK7#
DRQ6
DAK6#
DRQ5
DAK5#
DRQ3
DAK3#
DRQ2
DAK2#
DRQ1
DAK1#
DRQ0
DAK0#

DRQ4

DAK4#

OSC

System
Timer

Refresh
Timer

Audio
Timer

IRQ0

Watch
Dog

Timer

Slow
Down
Timer

SP
K

R

SLOWH#

MAK0#

MREQ0#

MAK1#

MREQ1#
MAK2#

MREQ2#

MAK3#

MREQ3#
MAK4#

MREQ4#

MAK5#
MREQ5#

DHOLD

DHLDA

CPUMISS#

EMSTR16#

EXMASTER#

INTR

REFRESH#

GT16M#

AEN#
EOP/TC

Refresh
Logic

NMI

R
ef

re
sh

G
ra

nt
Bus Timeout

Master
8259

Slave
8259

Master
DMAC

Slave
DMAC

Watchdog Timeout

Refresh Request

DMA Request
DMA Grant

NMI
Logic

Central
Arbitration

Control

Bus Interface Logic

Chapter 12: Intel 82350DT EISA Chipset

185

NMI Logic

In an EISA system, there are four possible hardware causes for generation of
NMI to the host CPU:

• A Channel Check, or CHCHK#, from an ISA or EISA card reporting a

catastrophic failure.
• A system board RAM parity error (PARITY#).
• A Watchdog Timer timeout because an applications program has disable

interrupt recognition for an extended period of time.
• A bus Timeout from the Central Arbitration Control because the current

bus master has refused to yield the buses within the allowed period of time
(8 microseconds for an EISA bus master or 2.5 microseconds for a DMA
channel).

The programmer may also force the NMI logic to generate an NMI by writing
to I/O port 0462h with any data.

Interrupt Controllers

The ISP contains two modified Intel 8259A Programmable Interrupt Control-
lers in a master/slave configuration. Together, they provide a total of fifteen in-
terrupt request lines. Eleven of these are attached to the EISA/ISA card slots,
while the remainder are reserved for special system board functions. The Inter-
rupt Acknowledge input to the ISP is conspicuous by its absence. When a bus
master other than the DMAC or the Refresh logic is bus master, the ST2 signal
line is an input to the ISP and it performs the interrupt acknowledge function.
Whenever the EBC detects an interrupt acknowledge bus cycle on the host bus,
it sets ST2 low to signal interrupt acknowledge to the interrupt controllers in
the ISP.

Two new registers have been added to allow individual programming of each
interrupt request input as level-sensitive or edge-triggered. They are referred to
as the ELCR, or Edge/Level Control registers. The master interrupt controller's
ELCR resides at I/O port 04D0h, while the slave's resides at I/O port 04D1h.
Bit zero in the master's ELCR corresponds to the IRQ0 input, while bit seven
corresponds to the IRQ7 input. Bit zero in the slave's ELCR corresponds to the
IRQ8 input, while bit seven corresponds to the IRQ15 input. A zero in a bit po-
sition sets up the respective IRQ input to recognize positive, edge-triggered in-
terrupt requests (non-shareable). A one in a bit position sets the IRQ input up

EISA System Architecture

186

to recognize active low, level-sensitive interrupt requests (shareable). In both
ELCR registers, bit 0 must be a zero.

DMA Controllers

The ISP contains two enhanced Intel 8237 DMA Controllers in a master slave
configuration. Together, they provide a total of seven DMA channels. DMA
channels five through seven may be used by 16-bit I/O devices, while channels
zero through three are reserved for 8-bit I/O devices. Each of the DMA chan-
nels can be programmed to utilize the following EISA-specific features:

• 8, 16 or 32-bit transfers.
• ISA compatible, Type “A,” Type “B” or Type “C” bus cycles..
• buffer chaining.
• ring buffer.

Detailed information on programming the DMA controllers can be found in the
Intel 82350DT EISA Chipset manual.

When a DMA channel becomes bus master, the ISP depends on the EBC to run
the bus cycle for the DMA channel. The EBC generates START#, CMD#, IORC#
and IOWC#. When a DMA channel becomes bus master, the type of bus cycle
to run is indicated by the ISP's ST[3:0] outputs. Table 12-11 defines the ST[3:0]
output settings for the different types of DMA bus cycle types.

Chapter 12: Intel 82350DT EISA Chipset

187

Table 12-11. Type of DMA Bus Cycle In Progress
ST3 ST2 ST1 ST0 DMA Bus Cycle Type

0 0 0 0 8-bit ISA compatible
0 0 0 1 8-bit Type “A”
0 0 1 0 8-bit Type “B”
0 0 1 1 8-bit Type “C”
0 1 0 0 16-bit ISA compatible
0 1 0 1 16-bit Type “A”
0 1 1 0 16-bit Type “B”
0 1 1 1 16-bit Type “C”
1 0 0 0 32-bit ISA compatible
1 0 0 1 32-bit Type “A”
1 0 1 0 32-bit Type “B”
1 0 1 1 32-bit Type “C”
1 1 x x DMA controller Idle

System Timers

The ISP contains five programmable system timers necessary to the proper op-
eration of any EISA machine. All of these timers derive their timing from the
ISP's OSC input signal of 1.19318MHz.

• The System Timer is programmed during the POST to output a pulse onto

IRQ0 once every 55ms.
• The Refresh Timer is programmed during the POST to output a Refresh

Request to the Central Arbitration Control once every 15.09 microseconds.
• The Audio Timer is programmed by an applications program to yield the

desired output frequency on the SPKR output to the speaker driver on the
system board.

• The Watchdog Timer may be utilized by multitasking operating systems to
detect a cessation of interrupt servicing. The Watchdog Timer counts un-
serviced IRQ0 output pulses from the System Timer. When its initial count
is exhausted, the Watchdog Timer generates a Watchdog Timeout to the
NMI logic, causing it to generate NMI to the host CPU.

• The Slowdown Timer allows the programmer to make the host CPU ap-
pear to run slower to facilitate the proper operation of game software and
some copy protection schemes. The Slowdown Timer and all of the other
timers are described in the MindShare book entitled ISA System Architec-
ture.

EISA System Architecture

188

Central Arbitration Control

The ISP incorporates the Central Arbitration Control, or CAC. The operation of
the CAC is described earlier in this publication. In the event of a Bus Timeout
(when a bus master refuses to yield control of the buses within a time limit), an
NMI is generated to the host CPU. In order to force the errant bus master off
the bus, the CAC sets the ISP's RSTDRV output active to reset the bus master.
The buses are then granted to the host CPU so it can service the NMI. In the
NMI interrupt service routine, the programmer may read the contents of the
Bus Master Status Latch at I/O port 0464h to determine the identity of the
faulty bus master card. Bits zero through five in this register indicate which
EISA bus master card was last granted the buses. Bit zero corresponds to the
bus master in EISA card slot one, while bit five corresponds to the bus master
in EISA card slot six. Bits six and seven in this register aren't used.

Refresh Logic

The Refresh Logic is contained in the ISP. It arbitrates for the buses once every
15.09 microseconds when the Refresh Timer sets the internal signal Refresh Re-
quest active. The CAC uses an internal Refresh Grant line to grant the buses to
the Refresh Logic. At that time, the Refresh logic sets the ISP's REFRESH# out-
put active. The Refresh logic drives the row address onto the host address bus,
HA[31:2].

Miscellaneous Interface Signals

Table 12-12 defines ISP signals not defined elsewhere.

Chapter 12: Intel 82350DT EISA Chipset

189

Table 12-12. Miscellaneous ISP Signals
Signal Direction Description

CPUMISS# in Generated by the host CPU logic, it indicates that the
host CPU or its related cache controller requires the use
of the buses to run a bus cycle. This is an input to the
Central Arbitration Control.

EXMASTER# out EISA Master. Generated by the Central Arbitration
Control when the buses are granted to an EISA bus
master. This output is connected to the EBC so it will
know whether an EISA bus master is performing a bus
cycle.

EMSTR16# out Early 16-bit Bus Master. Set active by the Central Arbi-
tration Control if the buses are granted to a 16-bit ISA
bus master. This output is connected to the EBC so it
will know whether an ISA bus master is performing a
bus cycle.

DHOLD out Hold Request. When the Central Arbitration Control is
going to grant the buses to a device other than the host
CPU, it must first force the host CPU to relinquish con-
trol of the buses. The ISP sets its DHOLD output active
to the EBC. The EBC, in turn, sets HHOLD (Host Hold
Request) active. HHOLD is connected to either the host
CPU's (in a cacheless system) or the host cache control-
ler's HOLD line. This forces the host off the bus. In re-
sponse, the host sets HHLDA, Host Hold Acknowl-
edge, active to the EBC. The EBC, in turn, sets its
DHLDA output active to the ISP to inform the CAC
that the host is off the bus.

DHLDA in Hold Acknowledge. See DHOLD description.
GT16M# out Greater Than 16MB. Generated by the DMA logic in

the ISP if the active DMA channel is driving a memory
address greater than 16MB (address greater than
00FFFFFFh) onto the host address bus, HA[31:2].
GT16M# is sent to the EBC's ISA interface unit, where it
determines whether the MRDC# or the MWTC# will be
set active during the DMA bus cycle. See description of
HGT16M# in table 12-6.

EISA System Architecture

190

Signal Direction Description

EOP/TC in/out End-of-Process or Transfer Complete. Generated by
the DMA controller at the end of a DMA transfer when
the transfer count has been exhausted. The TC signal is
connected to all EISA/ISA slots. When TC is detected
by the I/O device associated with the DMA channel,
the I/O device will respond by setting its respective
IRQ line active to signal the end of the transfer. EISA
I/O cards may also generate TC to the DMA controller
to prematurely terminate a transfer (e.g., in the case of
an error). TC also is used to inform Bus Masters when
to reprogram the DMA address buffer when buffer
chaining is used. This only pertains to bus masters that
program the DMA channel for buffer chaining.

AEN# out Address Enable. Generated by the DMA controller
whenever a DMA channel is bus master and is driving
a memory address onto the host address bus, HA[31:2].
For more information, refer to the chapter entitled
“EISA Automatic Configuration.”

DRDY in/out When an ISA bus master is accessing one of the regis-
ters within the ISP, this acts as the ready line and is
connected externally to the CHRDY signal. When a
DMA channel is bus master, DRDY acts as the ready
input from the I/O slave associated with the active
DMA channel. This permits the I/O slave to lengthen a
bus cycle until it is ready to complete it.

CSOUT# out Chip-Select Out. Whenever any bus master accesses
any of the ISP's internal registers, the signal CSOUT# is
set active. It should act as an enable for an external data
bus buffer between the ISP and data EBB. The direction
of the buffer is dictated by whether a read or a write
transaction is in progress.

RTCALE out Real-Time Clock Address Latch Enable. Any write to
the Real-Time Clock chip's address port at I/O address
0070h will cause RTCALE to be set active. This signal
informs the RTC chip that a CMOS RAM address is
present on the data bus and should be latched.

Table 12 - 12, cont.

Chapter 12: Intel 82350DT EISA Chipset

191

GT1M# out Greater Than 1MB. The ISP contains a memory ad-
dress decoder designed to recognize any memory ad-
dress less than 1MB (in the 00000000h through
000FFFFFh range). GT1M# is set active whenever the
memory address is greater than 000FFFFFh. The state
of this signal is used within the EBC's ISA interface unit
to determine whether or not to set the SMRDC# or
SMWTC# signal active. If the address is below 1MB,
SMRDC# or SMWTC# should be set active.

Table 12 - 12, cont.

EISA System Architecture

192

Glossary

193

32-bit EISA bus master EISA-based systems support 32-bit EISA bus master cards. A

bus master card typically includes an on-board processor and
local memory. It can relieve the burden on the main processor
by performing sophisticated memory access functions, such as
scatter/gather block data transfers.

82350DT EISA chip set The Intel 82350DT EISA chip set. The primary chips used by
most manufacturers includes the 82358DT EISA Bus Control-
ler, or EBC, the 82357 Integrated Systems Peripheral, or ISP,
and the 82352 EISA Bus Buffers, or EBBs

82352 EISA Bus Buffer Part of the Intel 82350 EISA chip set used for two separate
functions: one for the address latching and buffering and one
for the data buffering and steering.

82357 ISP This chip is part of the Intel 82350 chip set and contains a vari-
ety of functions including: the DMA controllers, Interrupt con-
trollers, Timers, Arbitration logic, and NMI logic.

8237 DMACs The Intel DMA controllers used in ISA systems.

AEN The signal used in ISA systems to disable all I/O address de-
coders so they do not respond to a DMA address. Also used in
EISA systems to independently enable I/O address decoders

AEN logic Logic responsible for controlling the AEN signal so that DMA
cycles, standard access to ISA expansion devices and slot spe-
cific I/O addressing occur properly.

Address translation The process of converting one type of address to another. For
example: translating the address from an ISA Bus Master
(SA0:SA16, LA17:LA23 and BHE#) to a 32-bit address
(LA2:LA31 and BE0:BE3) required by 32-bit EISA devices.

Arbitration Efficient bus sharing among the main CPU, multiple EISA bus
master cards and DMA channels according to a priority
scheme.

Arbitration scheme EISA uses a three-way rotational priority scheme between the
Refresh Logic, CPU and Bus Masters (shared), and DMA
Channels.

EISA System Architecture

194

BALE An ISA bus signal that is a buffered version of ALE. This signal
is used by expansion devices to notify them that a valid ad-
dress is on the ISA bus.

BCLK An ISA bus signal (bus clock) that provides the timing refer-
ence for all bus transactions.

BCPR Services The legal firm that manages the EISA specification.

Bridge The EISA chip set must allow the addresses and data gener-
ated by a bus master to propagate onto all of the system buses
so all of the devices in the system can be communicated with.
The connection between buses is termed a bridge.

Buffer chaining A DMA function that permits the implementation of scatter
write and gather read operations. A scatter write operation is
one in which a contiguous block of data is read from an I/O
device and is written to two or more areas of memory, or buff-
ers. A gather read operation reads a stream of data from sev-
eral blocks of memory, or buffers, and writes it to an I/O de-
vice.

Burst bus cycle A burst transfer is used to transfer blocks of data between the
current bus master (or DMA device) and EISA memory. After
the initial transfer in a block data transfer, each subsequent
EISA Burst bus transfer can be completed in one BCLK period

Burst DMA A DMA bus cycle that supports burst.

Bus Arbitration A process that determines how bus sharing among the main
CPU, multiple EISA bus master cards and DMA channels is
handled.

Bus Arbitration Scheme. See arbitration scheme

Bus Arbitration Signals. The signals available on the EISA bus that are used by bus
masters to gain ownership of the buses. A pair of signals,
MASTER REQUEST and a MASTER ACKNOWLEDGE exist
for each bus master.

Glossary

195

Bus Cycle Definition Specifies the type of bus cycle being run. Memory read, mem-
ory write, I/O read, I/O write, Interrupt acknowledge, Halt or
Shutdown.

Bus cycle, EISA std. Standard EISA bus cycle. A bus cycle based on a default a zero
wait-state operation over the EISA bus.

Bus master priority The priority a bus master has in the rotational scheme. The
priority changes as bus masters gain control of the buses.

Bus timeout Upon being preempted by removal of its Acknowledge, the
current bus master must relinquish control of the buses within
a prescribed period of time. Failure to do so results in a bus
timeout.

Cache controller A cache memory controller maintains copies of frequently ac-
cessed information read from DRAM memory in the cache.

Central Arbitration Control. The logic responsible for managing the bus arbitration
process.

Command translation The process of translating between EISA and ISA type com-
mands.

CMD# CMD# is an EISA signal that is set active by the system board
coincidentally with the trailing edge of START#. Only the sys-
tem board drives the CMD# line. CMD# then remains active
until the end of the bus cycle.

Configuration file A file for each expansion card that describes the programmable
options available on the card. Used in the EISA automatic con-
figuration process.

Configuration Process A process that uses information provided by EISA expansion
board manufactures and the system manufacturer to configure
the system for conflict free operation.

Data bus The group of signal lines used to transfer data between de-
vices.

EISA System Architecture

196

Data Bus Steering A process used to ensure data travels over the correct paths
between the current bus master and the currently addressed
device.

DMA burst bus cycles DMA bus cycles that supports burst.

DMA cascade channel The DMA cascade channel connects (cascades) two DMA Con-
trollers together. DMA channel 4 is used as the cascade chan-
nel.

DMA clock The clock used by the DMA Controller to control its data trans-
fer timing. DMA clock also called DCLK is typically one-half
the speed of BCLK.

DMA controller The devices used to perform the DMA transfers in an EISA
system. Two modified 8237 DMA controllers are cascaded to-
gether to provide support for seven EISA DMA channels.

DMA devices An I/O device that supports DMA transfers.

DMA Extended Write A option associated with DMA bus cycle timing that extends
the amount of time that the read command line is active.

DMA Page Register Each DMA channel has an external Page Register used to pro-
vide additional address capability. The DMA Controller
natively only has the ability to handle 64KB of memory loca-
tions.

DMA, Type A bus cycle. DMA bus cycle type that transfers data at a rate of every six
BCLK periods.

DMA, Type B bus cycle. DMA bus cycle type that transfers data at a rate of every four
BCLK periods.

DMA, Type C bus cycle. See burst bus cycle.

Downshift burst A burst bus cycle performed by a 32-bit EISA bus master when
communicating to a 16-bit EISA slave that supports burst.

EBB See EISA bus buffer

EBC See EISA bus controller

Glossary

197

EISA bus buffer Two EISA bus buffers (EBBs) are typically used in EISA sys-
tems: the Data EBB and the Address EBB.

 The Data EBB controls the data transceivers when routing data
between the host and EISA buses and performs data bus steer-
ing when necessary, utilizing latches and data bus transceivers.

 The Address EBB ensures that the address generated by the
current bus master is seen by every host, EISA and ISA slave in
the system.

EISA bus controller Together with the Data and Address EBBs, the EBC provides
the bridging, translation and data bus steering functions

Edge/level
control register Allows each interrupt request input to the interrupt controller

to be programmed to recognize either edge trigger for ISA de-
vices or level triggering for sharable EISA devices.

ELCR See Edge/Level Control Register.

EX16# EISA size 16 signal that specifies that a 16-bit EISA device is
being addressed.

EX32# EISA size 32 signal that specifies that a 32-bit EISA device is
being addressed.

EXRDY Used by EISA devices to stretch the default timing beyond
zero wait-states if the device's access time exceeds the default
ready timing.

HLDA See Hold Acknowledge

HOLD See Hold Request

Hold Acknowledge Hold acknowledge. A microprocessor output that notifies the
request device that the microprocessor has given up ownership
of the buses.

Hold Request Hold request. A microprocessor input that is used by bus mas-
ters to gain ownership of the buses.

EISA System Architecture

198

Host bus The bus on which the main CPU and main memory reside.

Peripheral A chip in the EISA chip set (ISP) that contains a variety of func-
tions including; the interrupt controllers, DMA controllers, ar-
bitration logic, timers, and NMI logic.

Interrupt acknowledge A signal sent to the interrupt controller to indicate that its re-
quest is being acknowledged.

Interrupt latency The time that expires between a device requesting service via
an interrupt request and when the servicing finally occurs.

Interrupts, phantom An erroneous interrupt triggered at the input of the interrupt
controller, usually caused by a noise spike.

Interrupts, shareable The ability of two devices to share a single interrupt request
line (IRQ) and operate without conflict.

LA bus Latchable Address bus. A portion of the ISA bus that connects
to 16-bit devices. These address lines are valid earlier that the
System Address lines (SA) and provide the ability of 16-bit de-
vices to operate at zero ISA wait-states.

LOCK# signal Bus Lock. Prevents other bus masters from gaining control of
the EISA bus when the current master asserts LOCK# when
performing read/modify write operations.

M/IO# Memory or I/O signal. Used by EISA devices to either specify
or determine whether the address currently on the EISA bus is
for a memory or I/O device. Also an output from 386 and 486
microprocessors.

MSBURST# Master Burst signal. Asserted by EISA masters to inform a
bursting slave that a burst cycle will be run.

NMI Non-maskable Interrupt. Used to report serious error condi-
tions to the microprocessor.

Preemption The ability of bus masters to request and gain ownership of the
system buses from the current bus master.

Glossary

199

Refresh The process of keeping dynamic memory from loosing infor-
mation from the bit cell due to capacitor discharge. All DRAM
throughout the system is refreshed approximately every fifteen
microseconds.

Refresh logic The logic that runs refresh bus cycles. The refresh logic is a bus
master capable of gaining ownership of the buses on a regular
basis.

Ring buffers A ring buffer reserves a fixed range of memory to be used for a
DMA channel. Once the buffer has been filled, data can be
stored at the beginning of the buffer again and old information
can be over-written if it has already been read by the micro-
processor.

Rotating priority A three-way rotational priority scheme between the Refresh
Logic, CPU and Bus Masters (shared), and DMA Channels to
determine which bus master will be next granted use of the
buses.

Slave A term used to refer to target devices with which bus masters
communicate in an EISA system.

SLBURST# Slave burst signal. Used by EISA bursting slaves when ad-
dressed to notify the current bus master that they support
burst cycles.

Slot-specific I/O The I/O addressing method used by EISA providing inde-
pendent address space on a slot-by-slot basis to support auto-
matic expansion board configuration.

START# The EISA signal that goes active at the beginning of address
time (T1) and inactive at the end of address time. Asserted by
the current bus master.

System timers The timers that are standard with all EISA systems and are
contained in the ISP. These timers include the system timer (0),
refresh timer, speaker timer, watchdog timer, and slowdown
timer.

Type A DMA bus cycle. See DMA, Type A

EISA System Architecture

200

Type B DMA bus cycle. See DMA, Type B

Type C DMA bus cycle. See DMA, Type C

W/R# Write or read. Used by EISA devices to either specify or de-
termine whether the current EISA bus cycle is a write or read
operation. Also an output from 386 and 486 microprocessors.

Index

201

—0—
0 Wait State ISA Bus Cycle Accessing 16-bit

Device, 64

—1—
16-bit bus master, 178
16-bit I/O ISA bus cycle, 61
16-bit ISA devices, transfers with, 57

—8—
82350DT EISA chip set, 29
8237 DMA controller, 132, 186
8237 DMAC, 67
8259 interrupt controller, 33
8259A programmable interrupt controller,

185
8-bit ISA device, transfers with, 54

—A—
Address bus extension, EISA, 43
Address bus, ISA, 43
Address enable, 190
Address enable signal, 96
Address latch, 58, 61, 64, 122
Address mode, 173
Address pipelining, 59, 61, 64, 74, 77
ADDRESS statement, 113
Address time, 55, 61, 64, 140, 142, 146, 148,

150, 151, 152, 153, 154, 155, 156, 158, 160,
161, 162, 163, 164, 174, 177, 179, 180

Address translation, 128
ADS# signal, 129
AEN decoder, 96
AEN decoder action table, 97
AEN logic, 96
AEN signal, 50, 74
AEN# signal, 190
AMODE, 173
Arbitration, 12
Arbitration example, 29
Arbitration signal group, EISA, 45

Audio timer, 187
AUTOEXEC.BAT, 104, 111

—B—
BALE, 177
BALE signal, 50, 55, 58, 61, 64, 78, 129
BCLK, 182
BCLKIN, 182
BIOS routine, 37
BIOS routines, EISA configuration, 102
Block mode transfer, 28
BOARD statement, 110
Bridge, 124
Buffer chaining, EISA DMA, 89
Burst bus cycle, EISA, 77
Burst bus cycle, EISA DMA, 87
Burst cycles, 10
Burst handshake signals, 48
Burst transfer, EISA, 77
Burst transfer, performance using, 82
Bus address latch enable, 177
Bus arbitration, 23
Bus arbitration signal group, EISA, 45
Bus clock, 182
Bus clock input, 182
Bus control logic, 120, 122
Bus cycle definition signal group, EISA, 48
Bus cycle timing signal group, EISA, 49
Bus cycle, EISA, 28
Bus cycle, ISA, 28
Bus cycle, ISA 16-bit device, 61
Bus cycles, ISA, 53
Bus master, 188
Bus master cards, 11
Bus master status latch, 188
Bus master type determination criteria, 146
Bus master, EISA, 28, 29
Bus master, ISA, 30, 67
Bus masters, EISA, 25
Bus timeout, 185, 188
Byte enable, 129, 140, 142, 143, 145, 147,

148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 162, 163, 165, 166,
167, 179

Byte enable lines, 179

EISA System Architecture

202

Byte enable signals, 43, 74, 78
Byte enables, 74

—C—
CAC, 23, 28, 123, 188, 189
Cache, 25, 113, 189
Cache support, 180
CATEGORY field, 110
Category list, 114
Central arbitration control, 23, 132, 162, 163,

164, 175, 185, 187, 188, 189
CFG file extension, 102
Chaining mode, EISA DMA, 89
Channel check, 185
Channel ready, 178
CHCHK# signal, 101, 185
Chip-select out, 190
CHOICE block, 112
CHRDY, 140, 141, 143, 144, 147, 149, 157,

159, 162, 163, 164, 165, 166, 178, 190
CHRDY signal, 56, 59, 61
CLKKB, 182
Clock generator unit, 181
CMD# signal, 49, 74, 76, 129, 140, 141, 142,

143, 144, 146, 147, 148, 149, 150, 151, 152,
153, 154, 155, 156, 157, 158, 159, 160, 161,
163, 164, 176, 179, 186

Command, 179
Command signal, 49
Command signal translation, 128
Compressed bus cycle, EISA, 75
Compressed mode, EISA DMA, 74
Compressed timing, ISA DMA, 69
CONFIG.SYS, 104, 111
Configuration, 12
Configuration bits, EISA, 101
Configuration file macro language, EISA,

104
Configuration file naming, EISA, 102
Configuration file, EISA, 101
Configuration file, example EISA, 104
Configuration procedure, EISA, 103
Configuration process, EISA, 101
Configuration registers, EISA, 100
Connector pinouts, EISA, 50

CPU, 25
CPU selection, 135
CPU type, 135
CPUMISS# signal, 189
CSOUT# signal, 190
Current registers, EISA DMA, 89

—D—
D/C# signal, 129
DAKn# signals, 87
Data bus extension, EISA, 45
Data bus steering, 134, 137, 140, 142, 144,

146, 147, 148, 149, 150, 151, 152, 153, 154,
155, 156, 157, 158, 160, 161, 164, 179, 180

Data bus steering logic, 12, 74, 82
Data bus transceivers, 120
Data path steering, 129
Data time, 55, 59, 61, 65, 140, 141, 142, 144,

147, 148, 149, 150, 151, 152, 153, 156, 157,
158, 160, 161, 162, 163, 176, 179, 180

Default ready timer, 56, 59, 61, 62, 65
Demand mode transfer, 28
Device ROM, 112
Device ROM scan, 37
Device ROMs, 37
DHLDA, 175, 189
DHOLD, 175, 189
DMA, 25, 28
DMA bus cycle type, 187
DMA bus cycle types, EISA, 83
DMA bus cycle, EISA type A, 85
DMA bus cycle, EISA type B, 86
DMA bus cycle, EISA type C, 87
DMA bus cycle, ISA-compatible, 84
DMA Bus Cycles, ISA, 67
DMA bus master, 171
DMA cascade channel, 67
DMA cascade input, 67
DMA channel, 112
DMA channel 0, 67
DMA channel preemption, EISA, 89
DMA channels, EISA, 83
DMA clock, 67
DMA clock speeds, 68
DMA controller, 50, 74, 186, 190

Index

203

DMA controller, EISA, 83
DMA enhancements, 10
DMA idle state, ISA, 68
DMA memory address limit, ISA, 67
DMA memory address register, 67
DMA memory addressing, EISA, 88
DMA transfer rate summary, EISA, 88
DMAC, 25
DMAC bus cycle, 68
Downshift burst bus master, 82
DRDY, 190

—E—
Early 16-bit bus master, 189
EBB, 133, 134, 137, 138, 139, 140, 141, 142,

143, 144, 145, 146, 147, 148, 149, 150, 151,
152, 154, 155, 156, 157, 158, 161, 162, 163,
164, 165, 166, 167, 168, 169, 170, 171, 172,
175, 176, 190

EBC, 78, 133, 134, 135, 136, 137, 138, 140,
141, 142, 143, 144, 145, 146, 147, 148, 149,
150, 151, 152, 153, 154, 155, 156, 157, 158,
159, 160, 161, 162, 163, 164, 165, 166, 167,
168, 169, 171, 172, 173, 175, 176, 177, 178,
179, 180, 181, 182, 183, 185, 186, 189, 191

Edge/level control register, 36, 185
Edge-triggered interrupt requests, 185
EISA burst bus cycle, 77
EISA burst transfer, 77
EISA bus, 117, 119
EISA bus buffers, 133, 134
EISA bus controller, 78, 133, 134
EISA bus interface unit, 179
EISA bus master, 170, 188
EISA bus master bus cycles, 71
EISA chip set, 124, 133
EISA compressed bus cycle, performance

using, 76
EISA connector, 41
EISA master, 189
EISA ready signal, 49
EISA ready., 180
EISA signal groups, 42
EISA signals, 41
EISA size 16, 180

EISA size 32, 180
EISA slave size 16 signal, 50
EISA slave size 32 signal, 50
EISA standard bus cycle, performance

using, 75
ELCR bit assignment, master 8259, 36
ELCR bit assignment, slave 8259, 37
ELCR register, 36, 185
Embedded device, 94, 98
EMSTR16# signal, 146, 162, 163, 164, 189
ENABLE bit, EISA configuration, 101
ENDGROUP statement, 111
End-of-process or transfer complete, 190
EOP/TC, 190
EX16# signal, 50, 74, 77, 78, 82, 129, 140,

141, 142, 144, 146, 147, 148, 149, 150, 151,
152, 153, 154, 156, 158, 159, 160, 161, 162,
163, 164, 165, 167, 178, 180

EX32# signal, 50, 74, 77, 78, 129, 140, 141,
142, 144, 146, 147, 148, 149, 150, 151, 152,
153, 154, 155, 156, 158, 160, 161, 162, 163,
164, 165, 168, 178, 180

EXMASTER# signal, 146, 155, 189
Expanded memory, 113
EXRDY, 150, 151, 152, 153, 154, 155, 156,

160, 161, 164, 167, 168, 176, 180
EXRDY signal, 49, 74, 76, 79
Extended write, ISA DMA, 70

—F—
Features, EISA, 9, 14
File extension, EISA configuration, 102
FREE statement, 112
FUNCTION statement, 112

—G—
Gather operation, 89
Greater than 16MB, 189
Greater than 1MB, 191
GROUP statement, 111
GT16M# signal, 189
GT1M# signal, 177, 178, 191

EISA System Architecture

204

—H—
HADS0# signal, 165, 166, 167, 174
HADS1# signal, 165, 166, 167, 174
HALAOE# signal, 169, 170, 171
HALE# signal, 169, 170, 171
HCLKCPU, 182
HD/C# signal, 165, 166, 167, 168, 174
HDOE0, 138
HDOE1# signal, 138
HDSDLE1# signal, 138, 156, 165, 166, 167,

168
HERDYO# signal, 174, 180
HGT16M# signal, 175, 189
HHLDA, 146, 155, 165, 166, 167, 175, 189
HHOLD, 175, 189
HKEN# signal, 176
HLDA signal, 68
HLOCIO# signal, 155, 162, 163, 164, 165,

172, 175, 178, 180
HLOCK# signal, 174, 179
HLOCMEM# signal, 155, 162, 163, 164, 165,

172, 175, 180
HM/IO# signal, 165, 166, 167, 168, 170, 171,

174
HNA# signal, 173, 174
Hold acknowledge, 189
Hold acknowledge signal, 68
Hold request, 189
Hold request signal, 68
HOLD signal, 68
Hold time, 56, 59, 75
Host address status 0 and 1, 174
Host bus, 117, 118
Host bus interface unit, 172
Host bus stretch signal, 176
Host byte enables, 173
Host cache enable, 176
Host CPU bus master, 170
Host CPU clock, 182
Host data or control, 174
Host early ready output, 174
Host greater than 16MB, 175
Host hold acknowledge, 175
Host hold request, 175
Host local I/O, 175

Host local memory, 175
Host lock, 174
Host memory or I/O, 174
Host next address, 174
Host ready input, 174
Host ready output, 174
Host write or read, 174
HRDYI# signal, 174
HRDYO# signal, 166, 167, 168, 174, 176, 180
HSSTRB# signal, 180
HSTRETCH# signal, 176
HW/R# signal, 165, 166, 167, 168, 174

—I—
I/O address assignment, EISA, 95
I/O address decode, 50
I/O address decode, inadequate, 91
I/O address ranges, unusable, 94
I/O address space, EISA slot-specific, 94
I/O read command, 177
I/O recovery, 182
I/O write command, 177
I/O write recovery time, 61
ID statement, 110
INITVAL statement, 110
In-service register, 34
Integrated system peripheral, 183
Integrated systems peripheral, 132, 133
Intel 82350DT EISA chip set, 29
Intel 8237 DMA controller, 132
Intel 8237 DMAC, 67
Interrupt acknowledge, 185
Interrupt acknowledge bus cycle, 34
Interrupt chaining, 38
Interrupt controller, 33, 132, 185
Interrupt handling, 12, 33
Interrupt handling, EISA, 35
Interrupt handling, ISA, 34
Interrupt latency, 40
Interrupt pending bit, 39
Interrupt request, 112, 185
Interrupt request, level-sensitive, 37
Interrupt return, 35
Interrupt service routine, 37, 188
Interrupt service routine, linked list, 38

Index

205

Interrupt table, 37
Interrupt vector, 34
Interrupt, ghost, 34, 40
Interrupt, non-shareable, 35
Interrupt, phantom, 40
Interrupt, shareable, 35
IO size 16, 178
IO16# signal, 61, 74, 129, 140, 142, 146, 148,

150, 152, 153, 154, 158, 162, 163, 164, 165,
166, 178

IOCHKERR bit, EISA configuration, 101
IOCHKRST bit, EISA configuration, 101
IOPORT() statement, 110
IORC# signal, 50, 55, 61, 87, 129, 140, 141,

147, 157, 159, 177, 186
IOWC# signal, 50, 55, 61, 87, 129, 141, 143,

149, 157, 159, 162, 163, 164, 166, 177, 186
IRET instruction, 35
IRQ lines, number of, 35
IRQ0, 185, 187
IRQ13 signal, 89
IRQ15, 34, 185
IRQ7, 34, 185
IRQ8, 185
IRR bit, 34
ISA bus, 119
ISA bus cycles, 53
ISA bus interface unit, 176
ISA bus master, 170
ISA I/O address space problem, 91
ISA slave, 16-bit, 54
ISA slave, 8-bit, 53
ISP, 132, 133, 134, 162, 163, 164, 171, 175,

177, 178, 183, 184, 185, 186, 187, 188, 189,
190, 191

ISR, 34

—K—
Keyboard clock, 182

—L—
LA bus, 43, 55, 58, 59, 61, 64, 74, 122
LAHAOE# signal, 169, 170, 171
LALE# signal, 169, 170, 171

LASAOE# signal, 169, 170, 171, 172
LENGTH statement, 110
Level-sensitive interrupt requests, 186
LIM page frame, 113
LINK group, 112
Local bus, 117
Lock signal, 49
LOCK# signal, 174, 179
Lock, bus, 49

—M—
M/IO# signal, 48, 74, 77, 96, 129, 140, 142,

143, 145, 147, 148, 149, 150, 151, 152, 153,
154, 155, 156, 157, 158, 159, 160, 161, 164,
168, 170, 171, 179

M16# signal, 55, 58, 64, 129, 140, 142, 146,
148, 150, 152, 153, 154, 158, 162, 163, 164,
165, 166, 178

MAK signal, 29
MAKx# signal, 46
Manufacturer's code, 99, 110
Master acknowledge signal, 46
Master burst, 180
Master burst signal, 48
Master request signal, 46
MASTER16# signal, 146, 155, 156, 158, 160,

161, 162, 163, 164, 178
Memory capacity, 10
Memory or I/O, 179
Memory or I/O signal, 48
Memory read command, 177
Memory size 16, 178
MEMORY statement, 113
Memory write command, 177
Memory-mapped I/O, 113
MEMTYPE field, 113
MRDC# signal, 58, 64, 85, 129, 140, 147, 157,

159, 175, 177, 189
MREQ signal, 29
MREQn#, 28
MREQx# signal, 46
MSBURST# signal, 48, 78, 79, 87, 146, 180
MWTC# signal, 58, 59, 64, 85, 86, 129, 143,

149, 157, 159, 162, 163, 164, 166, 175, 177,
189

EISA System Architecture

206

—N—
NAME field, 110
NMI, 25, 28, 132, 185, 187, 188
No wait states, 178
Non-volatile memory, EISA, 102
NOWS# signal, 56, 59, 65, 74, 76, 140, 141,

143, 144, 147, 149, 157, 159, 162, 163, 164,
165, 166, 178

—O—
OSC input signal, 187

—P—
Page mode RAM, 45
Page register, 67
PARITY# signal, 185
Pipelining, address, 59, 61, 64
POST, 37, 103, 187
Posted write enable, 176
Preemption, 28
Priority, 25
Priority, DMA controller, 25
Priority, rotational, 25
Product identifier, 99
Product identifier, EISA, 98
Product revision, 99
PWEN# signal, 176

—Q—
QHSSTRB# signal, 180

—R—
RAM parity error, 185
RDE# signal, 180
READID statement, 110
READY#, 129
READY# timing, default, 54
Real-time clock address latch enable, 190
Recovery time, IO write, 61
Refresh bus master, 171
Refresh counter, 31

Refresh grant, 188
Refresh logic, 25, 28, 30, 132, 171, 178, 185,

188
Refresh request, 188
Refresh timer, 187, 188
REFRESH# signal, 146, 178, 188
Reset 385 cache controller, 181
Reset control, 181
Reset host CPU, 181
Restart, 181
Ring buffer, EISA DMA, 90
ROM memory, 113
RST, 181
RST385, 181
RSTAR# signal, 181
RSTCPU, 181
RSTDRV, 188
RTCALE, 190

—S—
S1 state, ISA DMA, 68
S2 state, ISA DMA, 68
S3 state, ISA DMA, 68, 69
S4 state, ISA DMA, 68
SA0, 140, 141, 143, 144, 147, 149, 157, 159,

162, 163, 164, 165, 166, 173, 177, 179
SA1, 140, 141, 143, 144, 147, 149, 157, 159,

162, 163, 164, 165, 166, 173, 177, 179
SALAOE# signal, 169, 170
SALE# signal, 169, 170, 171
SBHE# signal, 140, 141, 143, 144, 147, 149,

157, 159, 162, 163, 164, 165, 166, 173, 179
Scan, device ROM, 37
Scatter operation, 89
SCRAM memory, 45
SDCPYEN01# signal, 137, 138, 141, 143,

157, 165
SDCPYEN02# signal, 137, 141, 143, 147,

149, 151, 152, 153, 161, 164, 166, 167
SDCPYEN03# signal, 137, 141, 144
SDCPYEN13# signal, 138, 147, 149, 151,

152, 161, 164, 166, 167
SDCPYUP, 137, 138, 141, 143, 144, 147, 149,

151, 152, 157, 161, 164, 165, 166, 167
SDHDLE0# signal, 138, 140, 147, 151, 156

Index

207

SDHDLE1# signal, 138, 141, 147, 151, 156
SDHDLE2# signal, 138, 141, 147, 151
SDHDLE3# signal, 138, 141, 147, 151
SDHDLEx# outputs, 148
SDOE0# signal, 138, 141, 143, 147, 149, 151,

152, 156, 157, 168
SDOE1# signal, 138, 141, 143, 147, 149, 151,

152, 156, 157, 158, 165, 168
SDOE2# signal, 138, 141, 143, 144, 147, 149,

151, 152, 153, 165, 166, 167, 168
SHARE statement, 112
Si state, ISA DMA, 68
SIZE statement, 112
Slave burst, 180
Slave burst signal, 48, 78
Slave size signal group, EISA, 50
SLBURST# signal, 48, 78, 82, 87, 180
SLOT statement, 110
Slot-specific I/O support, 181
Slowdown timer, 187
SMRDC# signal, 55, 129, 140, 141, 147, 157,

159, 177, 178, 191
SMWTC# signal, 55, 129, 141, 143, 149, 157,

159, 162, 163, 164, 177, 178, 191
SO state, ISA DMA, 68
SOFTWARE() statement, 111
SPWROK, 173, 181
ST2, 185
Standard EISA bus cycle, 72
Standard memory read command, 177
Standard memory write command, 178
START# signa, 77
START# signal, 49, 74, 129, 140, 141, 142,

143, 144, 146, 147, 148, 149, 150, 151, 152,
153, 154, 155, 156, 157, 158, 160, 161, 163,
164, 179, 186

State table, ISA DMA, 69
Stop register, EISA DMA, 90
SUBTYPE statement, 111
Sw state, ISA DMA, 68

System power OK, 181
System reset, 181
System timers, 187

—T—
TC signal, 89
Tc time, 55, 59, 61, 74, 77, 78, 79
Testing, 182
Timers, 132, 187
TIMING statement, 112
Transfer complete, 190
Transfer complete signal, 90
Transfer count register, 67
Transfer speed, ISA DMA, 70
Ts time, 55, 74, 76, 77, 78, 80
TYPE statement, 111

—W—
W/R# signal, 48, 74, 77, 78, 80, 85, 86, 129,

140, 142, 143, 145, 147, 148, 149, 150, 151,
152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 164, 179

Wait state, 58, 62, 77
Wait state, DMA, 68
Watchdog timeout, 187
Watchdog timer, 185, 187
Write bus cycle, 56, 61
Write or read, 179
Write or read signal, 48

—X—
X Bus, 119
X data bus transceiver, 120
XA bus, 122
X-bus, 117
XD bus, 120

	Title Page
	License Agreement
	Table of Contents
	About This Book
	The MindShare Architecture Series
	Organization of This Book
	Part One – The EISA Specification
	EISA Overview
	EISA Bus Structure Overview
	EISA Bus Arbitration
	Interrupt Handling
	Detailed Description of EISA Bus
	ISA Bus Cycles
	EISA CPU and Bus Master Bus Cycles
	EISA DMA
	EISA System Configuration

	Part Two – The Intel 82350DT EISA Chipset
	EISA System Buses
	Bridge, Translator, Pathfinder, Toolbox
	Intel 82350DT EISA Chip Set

	Who This Book Is For
	Prerequisite Knowledge
	Documentation Conventions
	Hex Notation
	Binary Notation
	Decimal Notation
	Signal Name Representation
	Bit Field Identification (logical bit or�signal groups)

	We Want Your Feedback
	Web Site
	Mailing Address

	Part One: The EISA Specification
	Chapter 1: EISA Overview
	Introduction
	Compatibility With ISA
	Memory Capacity
	Synchronous Data Transfer Protocol
	Enhanced DMA Functions
	Bus Master Capabilities
	Data Bus Steering
	Bus Arbitration
	Edge and Level-Sensitive Interrupt Requests
	Automatic System Configuration
	EISA Feature/Benefit Summary

	Chapter 2: EISA Bus Structure Overview
	Community of Processors
	Limitations of ISA Bus Master Support
	EISA Bus Master Support

	EISA System Bus Master Types
	Types of Slaves in EISA System

	Chapter 3: EISA Bus Arbitration
	EISA Bus Arbitration Scheme
	Preemption
	Example Arbitration Between Two Bus Masters
	Memory Refresh

	Chapter 4: Interrupt Handling
	ISA Interrupt Handling Review
	ISA Interrupt Handling Shortcomings
	Phantom Interrupts
	Limited Number of IRQ Lines

	EISA Interrupt Handling
	Shareable IRQ Lines
	Phantom Interrupt Elimination

	Chapter 5: Detailed Description of EISA Bus
	Introduction
	Address Bus Extension
	Data Bus Extension
	Bus Arbitration Signal Group
	Burst Handshake Signal Group
	Bus Cycle Definition Signal Group
	Bus Cycle Timing Signal Group
	Lock Signal
	Slave Size Signal Group
	AEN Signal
	EISA Connector Pinouts

	Chapter 6: ISA Bus Cycles
	Introduction
	8-bit ISA Slave Device
	16-bit ISA Slave Device
	Transfers With 8-bit Devices
	Transfers With 16-bit Devices
	Standard 16-bit Memory ISA bus Cycle
	Standard 16-bit I/O ISA bus Cycle
	Zero Wait State ISA Bus Cycle�Accessing 16-bit Device

	ISA DMA Bus Cycles
	ISA DMA Introduction
	8237 DMAC Bus Cycle

	Chapter 7: EISA CPU and Bus Master Bus Cycles
	Intro to EISA CPU and Bus Master Bus Cycles
	Standard EISA Bus Cycle
	General
	Analysis of EISA Standard Bus Cycle
	Performance Using EISA Standard Bus Cycle

	Compressed Bus Cycle
	General
	Performance Using Compressed Bus Cycle

	Burst Bus Cycle
	General
	Analysis of EISA Burst Transfer
	Performance Using Burst Transfers
	DRAM Memory Burst Transfers
	Downshift Burst Bus Master

	Chapter 8: EISA DMA
	DMA Bus Cycle Types
	Introduction
	Compatible DMA Bus Cycle
	Description
	Performance and Compatibility

	Type A DMA Bus Cycle
	Description
	Performance and Compatibility

	Type B DMA Bus Cycle
	Description
	Performance and Compatibility

	Type C DMA Bus Cycle
	Description
	Performance and Compatibility

	EISA DMA Transfer Rate Summary

	Other DMA Enhancements
	Addressing Capability
	Preemption
	Buffer Chaining
	Ring Buffers
	Transfer Size

	Chapter 9: EISA System Configuration
	ISA I/O Address Space Problem
	EISA Slot-Specific I/O Address Space
	EISA Product Identifier
	EISA Configuration Registers
	Configuration Bits Defined by EISA Spec
	EISA Configuration Process
	General
	Configuration File Naming
	Configuration Procedure
	Configuration File Macro Language
	Example Configuration File
	Example File Explanation

	Part Two: The Intel 82350DT Chip Set
	Chapter 10: EISA System Buses
	Introduction
	Host Bus
	EISA/ISA Bus
	X-Bus

	Chapter 11: Bridge, Translator, Pathfinder, Toolbox
	Bus Cycle Initiation
	Bridge
	Translator
	Address Translation
	Command Line Translation

	Pathfinder
	Toolbox

	Chapter 12: Intel 82350DT EISA Chipset
	Introduction
	EISA Bus Controller (EBC) and EISA Bus Buffers (EBBs)
	General
	CPU Selection
	Data Buffer Control and EISA Bus Buffer (EBB)
	General
	Transfer Between 32-bit EISA Bus Master and 8-bit ISA Slave
	Transfer Between 32-bit EISA Bus Master and�16-bit ISA Slave
	Transfer Between 32-bit EISA Bus Master and�16-bit EISA Slave
	Transfer Between 32-bit EISA Bus Master and�32-bit EISA Slave
	Transfer Between 32-bit EISA Bus Master and�32-bit Host Slave
	Transfer Between 16-bit EISA Bus Master and 8-bit ISA Slave
	Transfer Between 16-bit EISA Bus Master and�16-bit ISA Slave
	Transfer Between 16-bit EISA Bus Master and�16-bit EISA Slave
	Transfer Between 16-bit EISA Bus Master and�32-bit EISA Slave
	Transfer Between 16-bit ISA Bus Master and 8-bit ISA Slave
	Transfer Between 16-bit ISA Bus Master and 16-bit ISA Slave
	Transfer Between 16-bit ISA Bus Master and�16-bit EISA Slave
	Transfer Between 16-bit ISA Bus Master and�32-bit EISA Slave
	Transfer Between 32-bit Host CPU and 32-bit Host Slave
	Transfer Between 32-bit Host CPU and 8-bit ISA Slave
	Transfer Between 32-bit Host CPU and 16-bit ISA Slave
	Transfer Between 32-bit Host CPU and 16-bit EISA Slave
	Transfer Between 32-bit Host CPU and 32-bit EISA Slave

	Address Buffer Control and EBB
	Host CPU Bus Master
	EISA Bus Master
	ISA Bus Master
	Refresh Bus Master
	DMA Bus Master

	Host Bus Interface Unit
	ISA Bus Interface Unit
	EISA Bus Interface Unit
	Cache Support
	Reset Control
	Slot-Specific I/O Support
	Clock Generator Unit
	I/O Recovery
	Testing
	ISP interface unit

	82357 Integrated System Peripheral (ISP)
	Introduction
	NMI Logic
	Interrupt Controllers
	DMA Controllers
	System Timers
	Central Arbitration Control
	Refresh Logic
	Miscellaneous Interface Signals

	Glossary
	Index

