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The MindShare Architecture Series 

The MindShare Architecture book series includes: ISA System Architecture, EISA 
System Architecture, 80486 System Architecture, PCI System Architecture, Pentium 
System Architecture, PCMCIA System Architecture, PowerPC System Architecture, 
Plug-and-Play System Architecture, and AMD K5 System Architecture. 
 
Rather than duplicating common information in each book, the series uses the 
building-block approach. ISA System Architecture is the core book upon which 
the others build. The figure below illustrates the relationship of the books to 
each other. 

 
Series Organization 
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Organization of This Book 

EISA System Architecture is divided into two major parts: 
 
• Part One — The EISA Specification 
• Part Two — The Intel 82350DT EISA Chip Set 
 
Part One provides a detailed explanation of the ISA enhancements as set forth 
in the EISA specification, while Part Two provides a detailed description of the 
features implemented by the Intel 82350DT chip set. The following paragraphs 
provide a summary of each section. 

Part One – The EISA Specification 

EISA Overview 

This chapter provides an overview of the benefits provided by the EISA exten-
sion to ISA. 

EISA Bus Structure Overview 

This chapter introduces the EISA bus structure and its relationship to the sys-
tem board and expansion cards. The concepts of master and slave are intro-
duced and defined. The types of bus masters and slaves are identified. 

EISA Bus Arbitration 

The bus arbitration scheme used by the EISA Central Arbitration Control is de-
scribed in detail. 

Interrupt Handling 

An in-depth discussion of interrupt request handling in the ISA environment 
can be found in the chapter entitled “Interrupt Handling” in the MindShare 
book entitled ISA System Architecture. This chapter provides a brief review of 
the ISA interrupt request handling method and a detailed description of the 
EISA method.  
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Detailed Description of EISA Bus 

This chapter provides a description of all the signals on the EISA bus. 

ISA Bus Cycles 

This chapter provides a review of the ISA bus master and DMA bus cycles. 

EISA CPU and Bus Master Bus Cycles 

This chapter provides a detailed description of the EISA CPU and bus master 
bus cycle types. 

EISA DMA 

This chapter describes the EISA DMA capability. This includes a description of 
the EISA DMA bus cycle types and the other improved capabilities of the EISA 
DMA controller. 

EISA System Configuration 

In this chapter, EISA automatic system configuration is discussed. This in-
cludes a description of the slot-specific I/O address space, the EISA product 
identifier, and the EISA card control ports. The EISA configuration process and 
board description files are also covered. 

Part Two – The Intel 82350DT EISA Chipset 

EISA System Buses 

This chapter describes the major buses found in virtually all EISA systems. This 
includes the host, EISA, ISA and X buses. 

Bridge, Translator, Pathfinder, Toolbox 

This chapter provides a description of the major functions performed by the 
typical EISA chip set. It acts as the bridge between the host and EISA buses. It 
translates addresses and other bus cycle information into the form understood 
by all of the host, EISA and ISA devices in a system. When necessary, it per-
forms data bus steering to ensure data travels over the correct paths between 
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the current bus master and the currently addressed device. It incorporates a 
toolbox including all of the standard support logic necessary in any EISA ma-
chine. It should be noted that the ISA bus is a subset of the EISA bus. 

Intel 82350DT EISA Chip Set 

This chapter provides an introduction to the Intel 82350DT EISA chip set. The 
focus is on the 82358DT EISA Bus Controller (EBC) the 82357 Integrated Sys-
tems Peripheral (ISP) and the 82352 EISA Bus Buffers (EBBs). 

Who This Book Is For 

This book is intended for use by hardware and software design and support 
personnel. Due to the clear, concise explanatory methods used to describe each 
subject, personnel outside of the design field may also find the text useful.  
 
Those interested only in the compatibility and performance-related issues can 
skip over the detailed discussions and home in on the issues that interest them. 
Those interested in a more detailed explanation of the logic behind the en-
hancements can read the detailed explanations of bus cycle types and the EISA 
chip set. 

Prerequisite Knowledge 

EISA stands for the Extension to the Industry Standard Architecture. In order 
to fully grasp the EISA extensions, it is necessary to first understand the ISA 
system architecture. The detailed description of EISA presented in this book 
builds upon the concepts introduced in MindShare's book entitled ISA System 
Architecture to provide a clear, concise explanation of the EISA environment. 

Documentation Conventions 

This section defines the typographical conventions used throughout this book. 
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Hex Notation 

All hex numbers are followed by an “h.” Examples: 
 
 9A4Eh 
 0100h 

Binary Notation 

All binary numbers are followed by a “b.” Examples: 
 
 0001 0101b 
 01b 

Decimal Notation 

When required for clarity, decimal numbers are followed by a “d.” Examples: 
 
 256d 
 128d 

Signal Name Representation 

Each signal that assumes the logic low state when asserted is followed by a 
pound sign (#). As an example, the REFRESH# signal is asserted low when the 
refresh logic runs a refresh bus cycle. 
 
Signals that are not followed by a pound sign are asserted when they assume 
the logic high state. As an example, DREQ3 is asserted high to indicate that the  
device using DMA Channel three is ready for data to be transfered. 

Bit Field Identification (logical bit or 
signal groups) 

All bit fields are designated as follows: 
 
 [X:Y], 
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where X is the most-significant bit and Y is the least-significant bit of the field. 
As an example, the ISA data bus consists of SD[15:0], where SD0 is the least-
significant and SD15 the most-significant bit of the field. 

We Want Your Feedback 

MindShare values your comments and suggestions. You can contact us via 
mail, phone, fax or internet email. 
 
Phone  (800) 633-1440 
Fax  (719) 487-1434 
Email tom@mindshare.com 
 

Web Site 

Because we are constantly on the road teaching, we can be difficult to get hold 
of. To help alleviate problems associated with our migratory habits, we have a 
web site to supply the following services: 
 
• Download course abstracts. 
• Download tables of contents of each book in the series. 
• Facility to inquire about public architecture seminars. 
• Message area to log technical questions. 
• Message area to log suggestions for book improvements. 
• Facility to view book errata and clarifications. 
 
Web Site: www.mindshare.com  

Mailing Address 

 MindShare, Inc. 
 4285 Slash Pine Dr. 
 Colorado Springs, CO 80908 

mailto:tom@mindshare.com
http://www.mindshare.com/
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Chapter 1 
This Chapter 

This chapter provides an overview of the benefits provided by the extension to 
ISA, EISA. 

The Next Chapter 

The next chapter, “EISA Bus Structure Overview,” provides an overview of the 
“equal-opportunity” environment existent within all EISA-based systems. The 
different types of bus masters and slaves are identified. 

Introduction 

EISA is a superset of the ISA 8 and 16-bit architecture, extending the capabili-
ties of ISA while still maintaining compatibility with ISA expansion boards. 
 
EISA introduces the following improvements over ISA: 
 
• Supports intelligent bus master expansion cards. 
• Improved bus arbitration and transfer rates. 
• Facilitates 8, 16 or 32-bit data transfers by the main CPU, DMA and bus 

master devices. 
• An efficient synchronous data transfer mechanism, permitting single trans-

fers as well as high-speed burst transfers. 
• Allows 32-bit memory addressing for the main CPU, Direct Memory Ac-

cess (DMA) devices and bus master cards. 
• Shareable and/or ISA-compatible handling of interrupt requests. 
• Automatic steering of data during bus cycles between EISA and ISA mas-

ters and slaves. 
• 33MB/second data transfer rate for bus masters and DMA devices. 
• Automatic configuration of the system board and EISA expansion cards. 
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Compatibility With ISA 

EISA systems maintain full backward compatibility with the ISA standard. 
EISA connectors are a superset of the 16-bit connectors on ISA system boards, 
permitting 8 and 16-bit ISA expansion cards to be installed in EISA slots. While 
maintaining full compatibility with ISA expansion boards and software, EISA 
also offers enhancements in performance and functionality for EISA boards as 
well as some ISA boards. 

Memory Capacity 

EISA systems support a 32-bit address bus. The main CPU, bus master expan-
sion cards and DMA devices may access the entire 4GB memory space. ISA 
memory expansion cards can be used without modification to populate the 
lower sixteen megabytes. EISA memory expansion cards can add as much 
memory as needed for the application, up to the theoretical maximum of 4GB. 

Synchronous Data Transfer Protocol 

The EISA bus uses a synchronous transfer protocol. Bus master cards, DMA 
and the main processor synchronize their bus cycles to the bus clock. The syn-
chronous transfer protocol also provides the cycle control necessary to execute 
burst cycles with a transfer rate of up to 33 MB/second. 
 
EISA provides a number of bus cycle types covering a range of transfer speeds 
for different applications. The standard bus cycle requires two bus clock cycles, 
while the main CPU, DMA and bus masters are permitted to generate burst cy-
cles requiring one clock cycle per transfer. 

Enhanced DMA Functions 

EISA systems provide a number of DMA enhancements, including the ability 
to generate 32-bit addresses, 8, 16, and 32-bit data transfers and more efficient 
arbitration and data transfer types. In addition to newer, more efficient transfer 
types, EISA DMA also provides ISA-compatible modes with ISA timing and 
function as the default. 
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DMA offers a low-cost alternative to intelligent bus master cards. The EISA 
DMA functions are intended for I/O devices that do not require local intelli-
gence on the I/O expansion card. 
 
EISA 32-bit address support enables ISA and EISA DMA devices to transfer 
data to or from any 32-bit memory address. The default ISA DMA mode sup-
ports ISA-compatible 24-bit address generation with no software or hardware 
modifications. DMA software can be modified to support the 32-bit memory 
space, without modifications to the DMA hardware. 
 
Any DMA channel may be programmed to perform 8, 16 or 32-bit data trans-
fers. An 8-bit DMA device uses the lower data bus path, SD[7:0], while a 16-bit 
device uses the lower two paths, SD[7:0] and SD[15:8]. 32-bit DMA devices use 
all four data paths. 
 
Using burst bus cycles, a 32-bit DMA device can transfer data at speeds up to 
33 MB/second. 
 
EISA DMA channels may be programmed to use one of four DMA bus cycle 
types when transferring data between the I/O device and memory. The default 
DMA bus cycle type, ISA-compatible, delivers a higher data transfer rate than 
ISA-compatible computers. The improvement is the result of EISA's faster bus 
arbitration and requires no hardware or software modifications to ISA-
compatible DMA devices. Type A and B cycles are EISA modes that permit 
some ISA-compatible DMA devices to achieve higher performance. The burst 
DMA (Type C) bus cycle type is the highest-performance DMA bus cycle and is 
only available to DMA devices designed specifically for EISA burst. 

Bus Master Capabilities 

EISA-based systems support intelligent EISA bus master cards, providing data 
rates up to 33 megabytes/second using EISA burst bus cycles. A bus master 
card typically includes an on-board processor and local memory. It can relieve 
the burden on the main processor by performing sophisticated memory access 
functions, such as scatter/gather block data transfers. Examples of applications 
that might benefit from a bus master implementation include communications 
gateways, disk controllers, LAN interfaces, data acquisition systems and cer-
tain classes of graphics controllers. 
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Data Bus Steering 

The EISA bus system permits EISA and ISA expansion cards to communicate 
with each other. Special system board logic ensures that data travels over the 
appropriate data paths and translates the control signals when necessary. 
 
The system board data bus steering logic provides the automatic steering and 
control signal translation for ISA to ISA, EISA to EISA, ISA to EISA and EISA to 
ISA transfers. 

Bus Arbitration 

The EISA system board logic also provides a centralized arbitration scheme, al-
lowing efficient bus sharing among the main CPU, multiple EISA bus master 
cards and DMA channels. The centralized arbitration supports preemption of 
an active bus master or DMA device and can reset a device that does not re-
lease the bus after preemption. 
 
The EISA arbitration method grants the bus to DMA devices, DRAM refresh, 
bus masters and the main CPU on a fair, rotational basis. The rotational scheme 
provides a short latency for DMA devices to assure compatibility with ISA 
DMA devices. Bus masters and the CPU, which typically have buffering avail-
able, have longer, but predictable latencies. 

Edge and Level-Sensitive Interrupt Requests 

In order to provide backward-compatibility with ISA systems, EISA systems 
support positive edge-triggered interrupts. Unlike ISA systems, however, any 
EISA interrupt channel can be individually programmed to recognize either 
shareable, level-triggered or non-shareable, positive edge-triggered interrupt 
requests. Level-triggered operation facilitates the sharing of a single system in-
terrupt request line by a number of I/O devices. Level-triggered interrupts 
might be used, for example, to share a single interrupt request line between a 
number of serial ports. 

Automatic System Configuration 

EISA systems implement the capability to perform automatic configuration of 
system resources and EISA expansion boards each time the system is powered 
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up. System resources such as serial ports, parallel ports, VGA and other manu-
facturer-specific functions can be fully configured programmatically. 
 
The EISA expansion card manufacturer includes a configuration file with each 
expansion card shipped. The configuration files can be included with either 
new, fully-programmable EISA boards or switch-configured ISA or EISA 
products. The configuration files are used at system configuration time to 
automatically assign global system resources (such as DMA channels and inter-
rupt levels), thus preventing resource conflicts between the installed expansion 
cards. For switch-configurable boards, the configuration files can be used to de-
termine the proper assignment of resources and to instruct the user about the 
proper selection of switch settings. 
 
To accomplish the automatic configuration of the system board and expansion 
cards, EISA uses slot-specific I/O port ranges. An EISA card using these ranges 
can be installed into any slot in the system without the risk of I/O range con-
flicts. These I/O ranges can be used for expansion card initialization or for 
normal I/O port assignments that are guaranteed not to conflict with any other 
expansion board installed in the system. 
 
EISA also includes a product identification mechanism for system boards and 
EISA expansion cards. The product identifier allows products to be identified 
during the configuration and initialization sequences for the system and EISA 
expansion boards. EISA includes guidelines for selection of a product identi-
fier. The identifier for each product is selected by the product manufacturer 
and does not need the approval of any other party in the industry. However, a 
manufacturer-specific ID is assigned to each vendor by BCPR Services, the firm 
that manages the EISA specification. 

EISA Feature/Benefit Summary 

Table 1-1 provides a summary of the key features and benefits of the Extended 
Industry Standard Architecture. 
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Table 1-1. EISA Feature/Benefit Summary 
Feature Benefit 

Backward compatible with all ISA 
expansion boards 

Customer base retains value of installed ISA 
cards. 

Board size 63 square inches of board space permits imple-
mentation of powerful, highly-integrated ex-
pansion cards. 

+5Vdc at approximately 4.5A 
available at each expansion slot  

Ample power for expansion cards employing a 
large amount of highly-integrated logic. 

32-bit address and data buses Support for 4GB of memory and 32-bit transfers.  

Programmable level- or edge-
triggered interrupt recognition 

Interrupt request lines may be shared by multi-
ple devices. 

Enhanced DMA capabilities 
 

Both ISA and EISA DMA devices have access to 
memory above 16MB. New bus cycle types and 
32-bit data bus allow faster transfer speeds 
(rates of up to 33 MB/second). 

Bus Master Support 
 

Support for up to fifteen bus master expansion 
cards, fast burst bus transfers, automatic data 
bus steering and control line translation. 

Automatic system configuration Supports automatic configuration of the EISA 
system board and EISA expansion cards each 
time the system is powered up. Also provides 
help to the end user in configuring older ISA 
expansion cards. 
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Chapter 2 
The Previous Chapter 

The previous chapter provided an overview of the features and benefits real-
ized in the EISA environment. 

This Chapter 

This chapter introduces the EISA bus structure and its relationship to the sys-
tem board and expansion cards. The concepts of master and slave are intro-
duced and defined. The types of bus masters and slaves are identified. 

The Next Chapter 

The next chapter, “EISA Bus Arbitration,” describes the bus arbitration mecha-
nism implemented in all EISA systems. 

Community of Processors 

The signals provided on each EISA expansion connector can be divided into 
four basic categories: 
 
• Address bus group 
• Control bus group 
• Data bus group 
• Bus arbitration group 
 
Three of these four signal groups are present on the expansion slots found in 
IBM PC/XT/AT products and compatible computers. In EISA, the bus arbitra-
tion group has been added.  
 
The EISA specification defines the signals found on the expansion connectors, 
as well as the permissible bus cycle types that can be performed by bus masters 
and the software protocol that bus masters must use when communicating 
with each other. It also defines the support logic residing on the system board 
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and expansion cards that is necessary to support EISA capabilities. Examples 
would be the system board's Central Arbitration Control (CAC) and the data 
bus steering logic, which are discussed in subsequent sections. 

Limitations of ISA Bus Master Support 

The IBM PC XT/AT and compatible products are essentially single-processor 
systems. They have one microprocessor located on the system board that uses 
the address, control and data buses to communicate with the various memory 
and I/O devices found in a system.  
 
The microprocessor on the system board is the bus master most of the time in a 
PC/XT/AT. It uses the bus to fetch instructions and to communicate with 
memory and I/O devices when instructed to do so by the currently executing 
instruction.  
 
Upon occasion, however, devices other than the microprocessor require the use 
of the bus in order to communicate with other devices in the system. These de-
vices are the DMA controller and the RAM refresh logic. The DMA controller 
must use the bus to transfer data between I/O devices and memory. The re-
fresh logic must use the bus periodically to refresh the information stored in 
DRAM memory. 
 
When a device other than the microprocessor (such as the DMA controller or 
the refresh logic) requires the use of the bus, it must force the microprocessor to 
give up control of the bus. This is accomplished by asserting the microproces-
sor's HOLD (Hold Request) input. Upon detecting HOLD asserted, the micro-
processor electrically disconnects itself from the address, control and data 
buses so the requesting device can use them to communicate with other de-
vices. This is called “floating” the bus. The microprocessor then asserts its 
HLDA (Hold Acknowledge) output, informing the requesting device that it has 
yielded the bus, making it the new bus master. The device remains bus master 
as long as it keeps the microprocessor's HOLD input asserted. 
 
When a bus master other than the microprocessor on the system board has 
completed using the bus, it deasserts the microprocessor's HOLD input, allow-
ing the microprocessor to re-connect itself to the bus and to become bus master 
again. 
 
Although it is possible for an expansion card inserted into an IBM PC/XT/AT 
expansion slot to become bus master, there is a major drawback. When an ex-
pansion card becomes bus master in a PC/XT/AT, it can remain bus master as 
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long as it keeps the microprocessor's HOLD line asserted. There are no safety 
mechanisms built into a PC/XT/AT to prevent a bus master card from mo-
nopolizing the use of the bus to the exclusion of the microprocessor and the 
RAM refresh logic on the system board and potential bus master cards installed 
in other expansion connectors. 
 
If, due to poor design or a failure, a bus master expansion card monopolizes 
the bus for an inordinate  amount of time, the main microprocessor cannot con-
tinue to fetch and execute instructions. This could have serious consequences. 
In addition, the refresh logic is unable to become bus master on a timely basis 
and data in DRAM memory could be lost. Finally, other bus master cards are 
not able to become bus master and transfer data. To summarize, severe prob-
lems can be incurred when bus master expansion cards are used in a 
PC/XT/AT. 

EISA Bus Master Support 

The ISA bus mastering problem is fixed in the EISA environment by the addi-
tion of the EISA bus arbitration signals and a Central Arbitration Control 
(CAC) on the EISA system board. The CAC provides a method for resolving 
situations where multiple bus masters are competing for the use of the bus. As 
explained in the chapter entitled “EISA Bus Arbitration,” a bus master is not 
permitted to monopolize the bus in an EISA machine. 
 
By establishing a method for resolving bus conflicts, EISA creates a system that 
can safely support multiple bus masters. This means that EISA products sup-
port use of the bus by: 
 
• The microprocessor 
• The DMA controller on the system board 
• The refresh logic on the system board 
• Bus master cards installed in expansion connectors 
 
Typically, a bus master card is quite intelligent, incorporating a microprocessor 
and its own local ROM, RAM and I/O devices. An example would be a disk 
controller card built around an 80386 microprocessor, executing its own soft-
ware from its local (on-board) ROM memory. It stores data received from main 
memory in its local memory prior to writing it to disk. It can read large 
amounts of data from disk, store it in its local memory and forward it to an-
other device, such as memory on the system board, when necessary. It controls 
an array (group) of eight disk drives. 
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Other bus masters could issue high-level commands or requests to the example 
disk controller. An example would be a request sent to the disk controller card 
to search for a database file called “TOM.DBF” on the eight disk drives it con-
trols and, if found, read a particular record and send it back to the requesting 
bus master. After issuing the request to the disk controller card, the requesting 
bus master would surrender the EISA bus and continue other local processing 
until the disk controller card responds. Upon completing the search, the disk 
controller card would become bus master and transfer the requested data into 
system memory for the other bus master to use. 
 
An EISA system can safely incorporate a number of intelligent bus master 
cards, each essentially running on its own. When required, they can communi-
cate with each other and transfer data between themselves either directly or 
through system memory. The EISA system is designed to support multi-
processing — multiple processors, each handling a portion of the overall task. 
Properly implemented, the parallel processing accomplished in this type of sys-
tem is extremely efficient. 
 
Figure 2-1 illustrates the EISA system bus structure. The basic system  compo-
nents are: 
 
• System board 
• ISA/EISA expansion cards 
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Figure 2-1. The EISA Bus — a Shared Resource 

 
The user may install two basic classes of devices on the expansion bus: 
 
• ISA-compatible expansion cards 
• EISA-compatible expansion cards 
 
All EISA and ISA expansion devices fall into one of two categories: 
 
• A master is a device that executes bus cycles to communicate with other 

devices. Any type of master can communicate with any type of slave in the 
system. The system board provides data bus steering logic that copies the 
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data between data paths and translates EISA/ISA control signals when 
necessary. 

• A slave is a device that a master reads from or writes to. A slave may be ei-
ther a memory or an I/O slave. 

 
There is only one type of ISA master — the ISA 16-bit bus master. This is a de-
vice that attaches to the ISA Bus and is capable of executing bus cycles to com-
municate with memory or I/O slaves. This is accomplished by interfacing the 
bus master card to DMA channel five, six or seven with the channel pro-
grammed to operate in cascade mode. A more detailed description of bus mas-
tering in the ISA environment can be found in the chapter entitled “DMA and 
Bus Mastering” in the MindShare book entitled ISA System Architecture. 

EISA System Bus Master Types 

In an EISA system, there are five basic types of bus masters: 
 
• 16-bit ISA or EISA bus master — This is a 16-bit ISA or EISA device that 

attaches to the EISA bus and is capable of executing bus cycles to commu-
nicate with any slave. When communicating with a 32-bit EISA slave or an 
8-bit ISA slave, the data bus steering logic on the system board must some-
times aid in the transfer. 

• 32-bit EISA bus master — This is a 32-bit device that attaches to the EISA 
bus and is capable of executing bus cycles to communicate with any slave. 
When communicating with 8 or 16-bit slaves, the data bus steering logic on 
the system board must sometimes aid in the transfer. 

• Main CPU — The CPU may communicate with any ISA or EISA Slave or 
with devices resident on the CPU's local bus structure. When the micro-
processor attempts to perform a transfer utilizing one or more data paths 
not connected to the target slave, the data bus steering logic on the system 
board must aid in the transfer. 

• The refresh logic — Used to refresh DRAM memory throughout the sys-
tem. 

• DMA controllers — Used to transfer information between an I/O device 
and system memory. 
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Types of Slaves in EISA System 

Slaves fall into the following categories: 
 
• 8-bit ISA I/O and memory slaves 
• 16-bit ISA I/O and memory slaves 
• 16-bit EISA I/O and memory slaves 
• 32-bit EISA I/O and memory slaves 
• 8, 16 or 32-bit slaves on the CPU's local bus 
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Chapter 3 
The Previous Chapter 

The previous chapter provided background on ISA’s inability to support mul-
tiple processors in a fair fashion and introduced the EISA bus and the role of 
the Central Arbitration Control logic on the EISA system board. The types of 
bus masters and slaves were identified. 

This Chapter 

The bus arbitration scheme used by the EISA Central Arbitration Control is de-
scribed in detail. 

The Next Chapter 

The next chapter, “Interrupt Handling,” describes the methods used to detect 
and service interrupt requests in both the ISA and EISA environments. 

EISA Bus Arbitration Scheme 

All EISA systems incorporate a device known as the Central Arbitration Con-
trol (CAC) on the system board. The CAC's task is to arbitrate among the out-
standing requests for bus ownership and to then grant the bus to the winner. 
 
There are four classifications of devices that can issue requests to the CAC: 
 
• Main CPU 
• Expansion bus masters 
• Refresh controller on the system board 
• DMA Controller (DMAC) on the system board 
 
Figure 3-1 illustrates the CAC's relationship to potential bus masters. 
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Figure 3-1. Block Diagram of the Central Arbitration Control (CAC) 

 
The CAC uses a multi-level, rotating priority arbitration scheme. Figure 3-2 de-
picts this rotational priority scheme. On a fully loaded bus, the order in which 
devices are granted bus access is independent of the order in which they gen-
erate bus requests, since devices are serviced based on their position in the ro-
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tational order. The DMAC is given a high order of priority to assure compati-
bility with ISA expansion boards that require short bus latency (because they 
don’t have any buffering). The EISA bus masters are assigned a lower priority 
and designers of EISA bus master cards must therefore provide for longer bus 
latency by incorporating buffers. 
 
The top priority level uses a 3-way rotation to grant bus access sequentially to a 
DMA channel, the refresh controller, and a device from the 2-way rotation (ei-
ther the main CPU or a bus master card). A DMA channel, the refresh control-
ler and a device from the 2-way rotation each gain access to the bus at least one 
of every three arbitration cycles (depending on what devices are requesting 
service). A device that does not request the bus is skipped in the rotation. The 
main CPU is allowed to retain control of the bus when no other devices are re-
questing bus mastership. In systems that provide the main CPU with a look-
through cache controller, the host processor only requires the use of the bus 
under the following conditions: 
 
• a cache read miss 
• an I/O read or write 
 
In a system wherein the main CPU doesn't have a cache (or uses a look-aside 
cache), the main CPU frequently requests the use of the bus. 
 
The DMA controller is programmed during the POST to use a fixed priority 
scheme in evaluating which DMA channel to service next. As pictured in figure 
3-2, this means that DMA channel zero has the highest priority, followed by 
channels two – seven. It should be noted that DMA channel four is unavailable 
because it is used to cascade the slave DMA controller through the master (see 
the chapter entitled “DMA and Bus Mastering” in the MindShare book  entitled 
ISA System Architecture). 
 
NMI interrupts are given special priority (because NMI is used to report critical 
errors). When an NMI interrupt occurs, the arbitration mechanism is modified 
so that the bus master cards and the DMACs are bypassed each time they come 
up for rotation. This gives the CPU complete control of the bus for NMI servic-
ing. 
 
DMA priorities can be modified by programming the DMAC control register to 
use rotating priority. This scenario is pictured in figure 3-3. Each DMA channel 
then has essentially the same priority as all of the others. 
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Figure 3-2. CAC with DMACs Programmed for Fixed Priority 
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Figure 3-3. CAC with DMACs Programmed for Rotational Priority 
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Preemption 

When one of the bus masters requires the use of the bus to communicate with 
another device, it must assert its request line (MREQn#) to the CAC (refer to 
figure 3-1). After deciding which device currently requesting the bus is next in 
the rotation, the CAC asserts the acknowledge line (MAKx#) associated with 
the bus master that currently owns the bus. In this way, the CAC preempts the 
current bus master, commanding it to relinquish control of the bus. Upon being 
preempted by removal of its acknowledge, the current bus master must relin-
quish control of the bus within a prescribed period of time. If the current bus 
master is an EISA bus master card, it must release the bus within 64 cycles of 
the bus clock signal (BCLK). Since BCLK has a nominal frequency of 8MHz, or 
125ns per cycle, 64 BCLK cycles equates to eight microseconds. If the current 
bus master is a DMA channel programmed for one of the new EISA bus cycle 
types (rather than the ISA-compatible bus cycle), the DMA channel has 32 
BCLKs , or four microseconds, to release the bus. DMA channels programmed 
to run ISA-compatible DMA bus cycles cannot be preempted. Care should 
therefore be taken when utilizing an ISA DMA channel to perform a block data 
transfer using either block or demand transfer modes. If the transfer is too long, 
other devices requiring the use of the bus, such as the refresh controller, may be 
forced to wait too long. 
 
The current bus master indicates that it is relinquishing control of the bus by 
de-activating its CAC request line (MREQx#). If it doesn't relinquish control 
within eight microseconds, the CAC takes the following actions: 
 
• asserts the reset signal on the EISA bus to force the current bus master off 

the bus 
• asserts NMI to alert the main microprocessor that a bus timeout has oc-

curred 
• grants the bus to the main CPU so that it can respond to the NMI 
 
If, on the other hand, the current bus master honors the preemption, relinquish-
ing the bus and deasserting its request to the CAC, the CAC then grants the bus 
to the next bus master in the rotation that is requesting the use of the bus. 
 
As illustrated in figure 3-1, the main CPU, refresh logic and the DMA controller 
each have a pair of request/acknowledge lines connecting it to the CAC. In ad-
dition, there is also a pair of request/acknowledge lines connected to each 
EISA connector in the system. The EISA specification provides support for up 
to fifteen EISA bus masters, numbered from zero to fourteen. MREQ0# and 
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MAK0# are typically used to implement an EISA-style bus master that is em-
bedded on the system board. MREQ1# and MAK1# are connected to EISA ex-
pansion connector one, MREQ2# and MAK2# to EISA connector two, etc. It 
should be noted, however, that the CAC encapsulated in the Intel 82350DT 
EISA chip set only has six pairs of EISA request/acknowledge lines and can 
therefore only support EISA bus master cards in a maximum of six EISA card 
connectors. This explains why some EISA machines with more than six EISA 
slots only support bus master cards in six of them. 
 
If the current bus master is preempted during a multiple bus cycle transfer, it 
will give up the bus as described above, and, after waiting two BCLKs, it re-
asserts its request line to request the use of the bus again. 

Example Arbitration Between Two Bus Masters 

The timing diagram in the figure 3-4 illustrates bus arbitration between two 
Bus masters. 
 

 
Figure 3-4. Arbitration between Two Bus Masters 
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The following steps define the sequence of events illustrated in figure 3-4. The 
step numbers correspond to the reference numbers in the illustration.  
 
1. Initially, the main processor owns the bus. 
2. The bus master in slot one requests the use of the bus by asserting MREQ1# 

(Master Request, slot 1) to the CAC. 
3. After the CAC has removed ownership of the bus from the main processor 

and the main processor signals its willingness to give up ownership, the 
CAC grants ownership to bus master one by asserting MACK1# (Master 
Acknowledge, slot 1). Bus master one now owns the bus and can initiate 
one or more bus cycles. 

4. The bus master in slot two signals its request for bus mastership by assert-
ing MREQ2# to the CAC. 

5. The CAC signals bus master one that it must give up bus mastership by 
removing MACK1#. 

6. After detecting its MACK1# deasserted, bus master one has up to eight mi-
croseconds to release the bus. This gives it time to complete one or more 
bus cycles prior to release. Bus master one signals its release of the bus by 
deasserting MREQ1#.  

7. The bus is granted to bus master two by the CAC when it asserts MACK2#. 
8. Bus master one requires the use of the bus again to either complete its pre-

viously-interrupted series of transfers or to initiate a new transfer. It signals 
its request to the CAC by asserting MREQ1#. 

9. Bus master two has finished using the bus, so it voluntarily gives up own-
ership by deasserting MREQ2#. 

10. The CAC removes ownership from bus master two by deasserting 
MACK2#. 

11. The CAC grants the bus to bus master one again by asserting MACK1#. 

Memory Refresh 

The EISA system board incorporates a refresh controller that requests the use 
of the bus once every fifteen microseconds to refresh a row of DRAM memory. 
16-bit ISA bus masters that hold the bus longer than fifteen microseconds must 
perform memory refresh bus cycles at the fifteen microsecond interval. 
 
The EISA refresh controller includes a 14-bit row counter that drives its con-
tents onto address lines 15:2 when the refresh controller becomes bus master. 
The refresh controller also places a value on BE#[3:0] to be transferred to A[1:0] 
and SBHE#. 
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Each time that the refresh controller requests the use of the bus and the request 
is not granted within fifteen microseconds, the refresh controller increments its 
uncompleted refresh count. This counter can count up to four uncompleted re-
fresh bus cycles. When the refresh controller succeeds in gaining control of the 
bus, it performs a refresh bus cycle and decrements the uncompleted refresh 
count by one. If more refreshes are queued up (the count isn't exhausted), the 
refresh controller immediately requests the use of the bus again without wait-
ing the normal period of fifteen microseconds. 
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Chapter 4 
The Previous Chapter  

The previous chapter described the bus arbitration scheme utilized in EISA 
machines. 

This Chapter 

An in-depth discussion of interrupt request handling in the ISA environment 
can be found in the chapter entitled “Interrupt Handling” in the MindShare 
book entitled ISA System Architecture. This chapter provides a brief review of 
the ISA interrupt request handling method and a detailed description of the 
EISA method.  

The Next Chapter 

The signals and support logic that comprise the ISA bus impose certain limita-
tions on performance and capabilities. The EISA specification builds upon the 
ISA bus, adding new bus signals and system board support logic. The end re-
sult is backward-compatibility with all ISA cards and improved performance 
and capabilities for EISA cards. The next chapter provides a detailed descrip-
tion of the extensions to the ISA bus and support logic. 

ISA Interrupt Handling Review 

The Intel 8259 interrupt controller's interrupt request inputs can be pro-
grammed to recognize either a rising-edge or a static high level as a valid inter-
rupt request. The programmer may select either of these recognition modes for 
all eight inputs at once. There is no provision for the selection of either type on 
an input-by-input basis. On an ISA machine, the 8259 interrupt controllers are 
programmed to recognize a rising-edge as a valid interrupt request on its eight 
inputs. The following section describes the two shortcomings inherent in ISA 
interrupt handling. 
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ISA Interrupt Handling Shortcomings 

Phantom Interrupts 

Internally, the 8259 has a pull-up resistor on each of its IRQ inputs. When an 
ISA expansion card must generate an interrupt request, the line is driven low 
by the card and is then allowed to go high again. The low-to-high transition is 
registered as an interrupt request by the 8259 interrupt controller on the system 
board. The 8259 specification also demands that the IRQ line must remain high 
until after the leading-edge of the first interrupt acknowledge bus cycle gener-
ated by the host processor. The pull-up resistor ensures that this will be the 
case. 
 
Consider the case where an ISA card is designed to keep its IRQ line low until a 
request must be generated. At that time, the card would allow the IRQ line to 
go high and would maintain the high until the request has been serviced. The 
transition from low-to-high would be registered as a request by the 8259. When 
the request has been serviced, the card would drive the line low again and keep 
it low until the next request is to be generated. Although this design would 
work, a problem may arise. 
 
A transitory noise spike on this interrupt request line could register as a valid 
interrupt request. When the microprocessor issues the first of the two interrupt 
acknowledge bus cycles, however, the IRQ line will already be low again. This 
means that the IRQ line's respective IRR (Interrupt Request Register) bit will 
not be active. The first interrupt acknowledge resets the highest-priority IRR bit 
and sets its associated bit in the ISR (In-Service Register). In this case, since the 
IRR bit is no longer set because the request was of too short a duration (a ghost, 
or phantom, interrupt), the 8259 must take special action. The 8259 is designed 
to automatically return the interrupt vector for its number seven input in this 
case. When the microprocessor then generates the second interrupt acknowl-
edge, the 8259 sends back the vector associated with its number seven input. 
On the system’s master 8259, this is 0Fh, the vector of IRQ7. On the slave, it is 
77h, the IRQ15 interrupt vector. The microprocessor therefore jumps to either 
the IRQ7 or the IRQ15 interrupt service routine.  
 
In these two routines, therefore, the programmer must perform a check to see if 
the IRQ7 or the IRQ15 was real. This is accomplished by reading the contents of 
the respective 8259's ISR register and checking to see if bit seven is really set. If 
it is, then the request is real and the programmer should execute the remainder 
of the interrupt service routine to service the request. If, on the other hand, the 
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bit is cleared, it was a phantom or ghost interrupt and the programmer should 
execute an interrupt return (the IRET instruction) to return to the interrupted 
program flow. 
 
ISA card designers can avoid this problem by designing the card's IRQ output 
driver to remain tri-stated when not requesting service, allowing the pull-up 
resistor inside the 8259 to keep it high. The line is not prone to pick up noise 
spikes when it's high. When a request must be generated, the card drives the 
IRQ line low and then lets it go high again. This low-to-high transition registers 
as a request in the 8259. When the microprocessor generates the first interrupt 
acknowledge, the line is guaranteed to be high and the request is therefore 
valid. 

Limited Number of IRQ Lines 

In the ISA environment, IRQ lines are not shareable because only one transition 
is registered if more than one card generates a transition. The low-to-high tran-
sition generated by the first card is recognized by the interrupt controller and 
any subsequent transitions are ignored until the first request has been serviced. 
More than one ISA device may share an IRQ line as long as it is guaranteed 
that they never generate requests simultaneously. Since only one device may 
use each IRQ line, a fully-loaded machine may easily use up all of the available 
lines. An in-depth discussion of interrupt handling in the ISA environment 
may be found in the MindShare book entitled ISA System Architecture. 

EISA Interrupt Handling 

Shareable IRQ Lines 

The interrupt controllers used in the EISA environment are a superset of the In-
tel 8259A controller. The 8259A allows the programmer to gang-program all 
eight IRQ inputs as either edge or level-triggered. In the EISA environment, 
machines must be capable of supporting both ISA and EISA-style cards. This 
means that the programmer must have the ability to individually select each 
IRQ input as either edge or level-triggered. The EISA interrupt controller has 
added an additional register for this purpose.  
 
The ELCR, or Edge/Level Control Register, provides this selectivity. The mas-
ter interrupt controller's ELCR is located at I/O address 04D0h, while the 
slave's is at I/O address 04D1h. Each of these registers is default programmed 
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to edge-triggering upon power-up. Tables 4-1 and 4-2 illustrate their respective 
bit assignments. 
 

Table 4-1. Master Interrupt Controller's ELCR Bit Assignment 
Bit  Description 

7 0 = IRQ7 is edge-sensitive and non-shareable, 1 = IRQ7 is level-sensitive 
and shareable. 

6 0 = IRQ6 is edge-sensitive and non-shareable, 1 = IRQ6 is level-sensitive 
and shareable. 

5 0 = IRQ5 is edge-sensitive and non-shareable, 1 = IRQ5 is level-sensitive 
and shareable. 

4 0 = IRQ4 is edge-sensitive and non-shareable, 1 = IRQ4 is level-sensitive 
and shareable. 

3 0 = IRQ3 is edge-sensitive and non-shareable, 1 = IRQ3 is level-sensitive 
and shareable. 

2 always 0 because the master's IRQ2 input is used to cascade the slave 
interrupt controller’s output through the master. 

1 IRQ1 is dedicated to the interrupt request output of the keyboard inter-
face. This bit must be 0, selecting edge-sensitive and non-shareable. 

0 IRQ0 is dedicated to the interrupt request output of the system timer. 
This bit must be 0, selecting edge-sensitive and non-shareable. 
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Table 4-2. Slave Interrupt Controller's ELCR Bit Assignment 
Bit Description 

7 0 = IRQ15 is edge-sensitive and non-shareable, 1 = IRQ15 is level-
sensitive and shareable. 

6 0 = IRQ14 is edge-sensitive and non-shareable, 1 = IRQ14 is level-
sensitive and shareable. 

5 IRQ13 is dedicated to the error output of the numeric coprocessor. This 
bit must be 0, selecting edge-sensitive and non-shareable. In reality, 
IRQ13 is shared by the numeric coprocessor and the chaining interrupt 
output of the DMA controller. More information regarding chaining can 
be found in the chapter entitled “EISA DMA.” 

4 0 = IRQ12 is edge-sensitive and non-shareable, 1 = IRQ12 is level-
sensitive and shareable. 

3 0 = IRQ11 is edge-sensitive and non-shareable, 1 = IRQ11 is level-
sensitive and shareable. 

2 0 = IRQ10 is edge-sensitive and non-shareable, 1 = IRQ10 is level-
sensitive and shareable. 

1 0 = IRQ9 is edge-sensitive and non-shareable, 1 = IRQ9 is level-sensitive 
and shareable. 

0 IRQ8 is dedicated to the alarm output of the Real-Time Clock chip. This 
bit must be 0, selecting edge-sensitive and non-shareable. 

 
When programmed to recognize level-sensitive interrupt requests,  the inter-
rupt controller recognizes a low on an IRQ line as a request and the interrupt 
request line may be shared by two or more devices. The following paragraphs 
define how this works. 
 
During the POST, software scans the area of memory space set aside for device 
ROMs, typically C0000h – DFFFFh, to determine if any expansion cards have 
device ROMs.  When a device ROM is detected, the POST jumps to the initiali-
zation routine in the ROM to execute the card's POST and to install the start 
addresses of its interrupt service and BIOS routines into the proper entries in 
the interrupt table in memory. The ROM's initialization routine reads the cur-
rent pointer from the interrupt table entry, saves it and writes the pointer to the 
device ROM's interrupt service routine in its place. After testing and initializing 
the card, the ROM code performs a return to the system POST. The POST then 
continues to scan the device ROM memory area for other device ROMs. If any 
are found, the same process is repeated. When another card is using the same 
IRQ line, its ROM code reads the current pointer from the interrupt table entry 
and saves it. This pointer points to the interrupt service routine within a previ-
ously detected device ROM for another EISA I/O card that is sharing this IRQ 
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line. The second card's ROM code then stores a pointer to its own interrupt ser-
vice routine into the IRQ line's assigned interrupt table entry. In this way, a 
linked list of interrupt service routine start addresses is created. Any loadable-
device drivers or TSRs that use shareable interrupt request lines should do the 
same. 
 
Each shareable interrupt request line has a pull-up resistor on it (internal to the 
EISA interrupt controller). When no request is being generated, or when no 
I/O devices are physically connected to the line, the line is pulled-up to a high 
level. This provides a good deal of noise immunity on the line, preventing spu-
rious requests. 
 
Figure 4-1 illustrates how multiple EISA I/O cards can share the same IRQ line. 
An I/O device that places a low on an interrupt request line when it generates 
a request may share the line with other devices that use it the same way. When 
a board of this type must generate a request, it acts as follows: 
 
• Through an open-collector driver, it creates a path to ground. This places a 

low on the 8259's request input. If other I/O devices are sharing the line 
and generate requests simultaneously, the shared IRQ line is low. 

• When an I/O board generates a request, it should also set its interrupt 
pending bit in a pre-defined I/O port on the card. 
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Figure 4-1. IRQ Line Sharing 

 
When the 8259 senses a low on a shareable request input, it generates an inter-
rupt request to the microprocessor. When the microprocessor requests the in-
terrupt vector, the 8259 responds with the vector for the line currently being 
serviced. The microprocessor then jumps to the interrupt service routine for the 
last device ROM detected during the POST. In this routine, an I/O read is per-
formed from the card's interrupt pending register to determine if this card is 
generating a request.  If the card's interrupt pending bit is set, the program con-
tinues and executes the remainder of the card's interrupt service routine to ser-
vice the request. If the card's interrupt pending bit isn't set, however, the 
program jumps to the next interrupt service routine in the chain. The second 
service routine then polls its respective card's interrupt pending register to de-
termine if it is generating a request. The act of servicing the request (for exam-
ple, sending a character to a serial port) causes the requesting board's interrupt 
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pending bit to be cleared. The board also ceases to provide a path to ground for 
the interrupt request line. 
 
If more than one I/O device were generating requests simultaneously, the 
other board or boards are still driving a low onto the shared request line. The 
8259 would therefore immediately sense another pending request and proceed 
as outlined above. This time, the interrupt pending bit for the board that was 
already serviced is determined to be cleared, a jump is executed to the next 
service routine in the chain to determine if its interrupt pending bit is set. 
 
Since the program must go through a linked service routine list to determine 
which board(s) is currently generating a request, it stands to reason that the 
lower down in the list a device is, the more time it will take to service its re-
quest (if other devices, further up the list, are also generating requests). This la-
tency, or delay, could cause problems ranging from slow servicing of a device 
right up to overflow conditions and missing characters. The problem can be 
solved in one of two ways: 
 
1. Move some devices to other interrupt requests lines. 
2. During the configuration process, install the devices requiring the smallest 

latency first and the others later in the process. 

Phantom Interrupt Elimination 

All IRQ inputs that are configured as level-sensitive, shareable inputs assume 
the high state when no requests are pending or when the IRQ line is unused. 
This renders these inputs relatively noise-free, substantially decreasing the pos-
sibility of phantom interrupts. 
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Chapter 5 
The Previous Chapter 

The previous chapter provided a detailed description of interrupt handling in 
the EISA environment. 

This Chapter 

This chapter provides a description of all the signals on the EISA bus. 

The Next Chapter 

In the next chapter, the types of bus cycles performed by the main CPU and 
EISA bus masters are described. 

Introduction 

The EISA bus consists of two sets of signal lines: 
 
• the ISA Bus 
• the extension to the ISA Bus (the EISA bus extension) 
 
Figure 5-1 illustrates the construction of the EISA connector. When installed, 
ISA boards are physically stopped by the EISA access key and make contact 
only with the ISA contacts. When an EISA board is installed, however, an 
alignment notch in the board allows it to bottom out, making contact with both 
the ISA and the EISA contacts. 
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Figure 5-1. The EISA Connector 

 
Many of the ISA signals have already been defined in preceding sections of this 
book and all of them are fully defined in the MindShare book entitled ISA Sys-
tem Architecture. This section is confined to a description of the EISA signals. 
The following are the signal groups that comprise the EISA Bus. 
 
• Address bus extension 
• Data bus extension 
• Bus Arbitration signal group 
• Burst handshake signal group 
• Bus cycle definition signal group 
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• Bus cycle timing signal group 
• Lock signal 
• Slave size signal group 
• AEN signal 
 
The following paragraphs provide a description of each of these signal groups. 

Address Bus Extension 

One of the restrictions imposed by the ISA bus structure is a function of the 
width of the address bus. It consists of 24 address lines, A[23:0]. This permits 
the microprocessor to address any memory location between address 000000h 
and FFFFFFh, a range of 16MB. 
 
With the advent of multi-tasking, multi-user operating systems, access to a 
greater amount of memory became an imperative. The EISA specification ex-
pands the address bus to 32 bits (A31:0]), and also adds the byte enable lines, 
BE#[3:0], to provide 32-bit bus master address support. The ISA bus includes 
the following address lines: 
 
• SA[19:0] 
• LA[23:17] 
• SBHE# 
 
The EISA address bus consists of the following signals: 
 
• SA[1:0] (ISA bus) 
• SBHE# (ISA bus) 
• LA[23:17] (ISA bus) 
• LA#[31:24] (EISA extension) 
• BE#[3:0] (EISA extension) 
• LA[16:2] (EISA extension) 
 
The EISA specification extends the size of the LA Bus to include LA[16:2] and 
LA#[31:24]. Refer to figure 5-2. Combined with the previously-defined SA bus 
and LA signal groups on the ISA portion of the bus, this extends the address 
bus to a full 32-bits, allowing the current bus master to generate any memory 
address in the range 00000000h – FFFFFFFFh. This is a range of 4GB (giga = bil-
lion). 
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Figure 5-2. The EISA Connector Address Lines 

 
LA#[31:24] are asserted low to prevent 16-bit bus masters from inadvertently 
selecting 32-bit memory cards residing above 16 MB. When a 16-bit bus master 
places an address on the address bus, it is only using lines A[23:0]. If address 
lines LA#[31:24] were allowed to float, a 32-bit memory card that resides above 
the 16MB boundary might be inadvertently selected. Rather, LA#[31:24] are 
pulled high with pull-up resistors on the system board, ensuring that they are 
deasserted unless asserted by a 32-bit bus master. 32-bit EISA memory cards 
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are designed to recognize that these upper address lines carry inverted address 
information  (0 on a line is a logical 1 and a 1 is a logical 0). 
 
Since the address information on the LA bus shows up sooner than the address 
on the SA bus (due to address pipelining and the fact that the LA bus bypasses 
the address latch on the system board), memory cards that use the LA lines can 
perform an early address decode. This allows the memory card designer to use 
slightly slow (inexpensive) memory chips and yet achieve higher throughput. 
In addition, the fact that the LA bus now includes the lower part of the address 
bus allows memory cards that use SCRAM or Page Mode RAM to determine if 
the next access will be in the same row of memory (because the row portion of 
the DRAM address is carried over the lower portion of the address bus). 
 
The EISA specification also adds the four byte enable signal lines, BE#[3:0], al-
lowing 32-bit bus masters to generate addresses in doubleword address format 
(A[31:2] plus the BE lines) and 32-bit slaves to see the address in 32-bit dou-
bleword format. 

Data Bus Extension 

The EISA specification extends the width of the data bus by adding two addi-
tional data paths consisting of SD[23:16] and D[31:24]. Using these data paths 
plus the two ISA data paths allows 32-bit bus masters to transfer four bytes (a 
doubleword) during a single transfer when communicating with 32-bit slaves.  

Bus Arbitration Signal Group 

Under EISA, two signals have been added to allow implementation of bus mas-
ter cards. They are described in table 5-1. 
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Table 5-1. EISA Bus Master Handshake Lines 
 

Signal Name 
 

Full Name 
 

Description 

MREQx# Master Request for slot x When a bus master in a slot requires 
the use of the bus to perform a trans-
fer, it asserts its slot-specific MREQx# 
signal line. This signal is applied to the 
CAC on the system board, which then 
arbitrates its priority against other 
pending bus requests. 
 

MAKx# Master Acknowledge for 
slot x 

When the CAC is ready to grant the 
bus to a requesting bus master 
(MREQx# is asserted), the CAC asserts 
the bus master's MAKx# slot-specific 
signal line to inform the bus master 
that it has been granted the bus. 

 
Figure 5-3 illustrates the relationship of the master request and acknowledge 
lines to the CAC. The subject of bus arbitration is covered in detailed the chap-
ter entitled “EISA Bus Arbitration.” 



Chapter 5: Detailed Description of EISA Bus 

47 

 
Figure 5-3. The Bus Master Handshake Lines 
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Burst Handshake Signal Group 

The EISA specification adds two signal lines to support initiation of burst mode 
(Type C) bus cycles. They are described in table 5-2. 
 

Table 5-2. The Burst Handshake Lines 
Signal 
Name 

 
Full Name 

 
Description 

SLBURST# Slave Burst When addressed, a slave asserts SLBURST# to indi-
cate that it supports burst cycles. If the slave supports 
burst cycles, it asserts this signal regardless of the 
state of the MSBURST# signal line. 
 

MSBURST# Master Burst During a bus cycle, the current bus master asserts 
this line as a response to the assertion of SLBURST#. 
This informs the addressed slave that the bus master 
supports burst cycles. 
 

 
The subject of burst mode (Type C”) bus cycles is covered in detail in the chap-
ter entitled “EISA CPU and Bus Master Bus Cycles.” 

Bus Cycle Definition Signal Group 

The EISA specification defines a new set of bus cycle definition signal lines. The 
current EISA bus master uses them to inform the currently addressed slave of 
the type of bus cycle in progress. Table 5-3 defines the new signals. 
 

Table 5-3. EISA Bus Cycle Definition Lines 
Signal Name Full Name Description 

M/IO# Memory or I/O During a bus cycle, M/IO# is set high if a memory 
address is on the address bus. It is set low if it's an 
I/O address. 
 

W/R# Write or Read During a bus cycle, W/R# is set high if a write bus 
cycle is in progress and low if a read bus cycle is 
in progress. 
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Bus Cycle Timing Signal Group 

Under the EISA specification, the signals described in table 5-4 were added to 
define the address and data portions of the bus cycle, as well as the end of the 
bus cycle. 
 

Table 5-4. EISA Bus Cycle Timing Signals 
Signal 
Name 

 
Full Name 

 
Description 

START# Start phase Every EISA bus cycle consists of two phases: the start 
and command phases. The address and the M/IO# 
control line are output by the current bus master and 
decoded by the target slave during the start phase. 
The start phase corresponds to address time and is 
therefore one BCLK is duration. 
 

CMD# Command 
phase 

Every EISA bus cycle consists of two phases: the start 
and command phases. The data is transferred during 
the command phase. CMD# is asserted at the trailing 
edge of the START# signal (trailing edge of Ts) and 
stays asserted until the end of the bus cycle. When a 
bus cycle has wait states inserted, the CMD# signal 
remains asserted for multiple cycles of BCLK. 
 

EXRDY EISA Ready Deasserted by an EISA slave to request the insertion of 
wait states in the current bus cycle. It is sampled on 
each falling edge of BCLK after the CMD# line is as-
serted. When sampled asserted, the bus cycle will be 
terminated at the next rising edge of BCLK. 

Lock Signal 

The LOCK# signal is asserted by the current bus master to prevent other bus 
masters from arbitrating for the use of the bus. This allows the current bus mas-
ter to complete one or more memory accesses prior to surrendering control to 
another bus master. The purpose of the bus lock capability is to prevent two 
bus masters that share a memory location as a software semaphore from be-
coming de-synchronized with each other. 
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Slave Size Signal Group 

When the current bus master addresses an EISA-style slave, the slave asserts 
one of these two signals to indicate the data paths it can use and to signal that it 
is an EISA-style slave. Table 5-5 describes these two signals. 
 

Table 5-5. The EISA Type/Size Lines 
Signal 
Name 

 
Full Name 

 
Description 

EX32#  EISA Slave Size 32 When a 32-bit EISA slave decodes its address, it 
asserts EX32# to inform the current bus master 
that it can handle 32-bit transfers. 
 

EX16# EISA Slave Size 16 When a 16-bit EISA slave decodes its address, it 
asserts EX16# to inform the current bus master 
that it can handle 16-bit transfers. 

AEN Signal 

The following paragraph describes the manner in which the AEN signal is used 
under the ISA specification. 
 
When either the master or slave DMA Controller (DMAC) on the system board 
becomes bus master, it asserts AEN as a substitute for BALE, indicating that a 
valid memory address is present on the address bus. Memory cards then de-
code the address on the address bus. I/O cards also monitor the AEN signal 
line and ignore the address on the bus when AEN is asserted. This is necessary 
because the DMAC asserts either the IORC# or IOWC# line and I/O devices 
think that there is an I/O address on the bus when there really isn’t. 
 
It should be noted that AEN has another, special, usage in the EISA environ-
ment. This additional function is discussed in the chapter entitled “EISA Sys-
tem Configuration.” 

EISA Connector Pinouts 

The EISA connector is an extended version of the ISA connector. The ISA con-
nector is divided into an 8-bit connector and a 16-bit extension. In figure 5-4, 
the upper half of the EISA connector, rows A and B, comprise the 8-bit portion 
that is compatible with the IBM PC and XT expansion connector and the 8-bit 
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portion of the connector found in the IBM PC/AT. On the lower half of the 
EISA connector in the figure, rows C and D comprise the 16-bit portion that is 
compatible with the 16-bit extension to the 8-bit connector found in the IBM 
PC/AT. The pins on the EISA connector are arranged in eight rows. Rows A, B, 
C, and D comprise the ISA group, while rows E, F, G and H comprise the EISA 
group. 
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Figure 5-4. The EISA Connector Pin Assignments 

F B E A

H D G C

F1  GND
F2  +5
F3  +5
F4  xxxxxx
F5  xxxxxx
F6  key
F7  xxxxxx
F8  xxxxxx
F9  +12
F10  M/IO#
F11  LOCK#
F12  Reserved
F13  GND
F14  Reserved
F15  BE3#
F16  key
F17  BE2#
F18  BE0#
F19  GND
F20  +5
F21  LA29#
F22  GND
F23  LA26#
F24  LA24#
F25  key
F26  LA16
F27  LA14
F28  +5
F29  +5
F30  GND
F31  LA10

H1  LA8
H2  LA6
H3  LA5
H4  +5
H5  LA2
H6  key
H7  SD16
H8  SD18
H9  GND
H10  SD21
H11  SD23
H12  SD24
H13  GND
H14  SD27
H15  key
H16  SD29
H17  +5
H18  +5
H19  MAKx#

B1  GND
B2  RESDRV
B3  +5
B4  IRQ9
B5  -5
B6  DRQ2
B7  -12
B8  NOWS#
B9  +12
B10  GND
B11  SMWTC#
B12  SMRDC#
B13  IOWC#
B14  IORC#
B15  DAK3#
B16  DRQ3
B17  DAK1#
B18  DRQ1
B19  REFRESH#
B20  BCLK
B21  IRQ7
B22  IRQ6
B23  IRQ5
B24  IRQ4
B25  IRQ3
B26  DAK2#
B27  TC
B28  BALE
B29  +5
B30  OSC
B31  GND

D1  M16#
D2  IO16#
D3  IRQ10
D4  IRQ11
D5  IRQ12
D6  IRQ15
D7  IRQ14
D8  DAK0#
D9  DRQ0
D10  DAK5#
D11  DRQ5
D12  DAK6#
D13  DRQ6
D14  DAK7#
D15  DRQ7
D16  +5
D17  MASTER16#
D18  GND

C1  SBHE#
C2  LA23
C3  LA22
C4  LA21
C5  LA20
C6  LA19
C7  LA18
C8  LA17
C9  MRDC#
C10  MWTC#
C11  SD8
C12  SD9
C13  SD10
C14  SD11
C15  SD12
C16  SD13
C17  SD14
C18  SD15

A1  CHCHK#
A2  SD7
A3  SD6
A4  SD5
A5  SD4
A6  SD3
A7  SD2
A8  SD1
A9  SD0
A10  CHRDY
A11  AENx
A12  SA19
A13  SA18
A14  SA17
A15  SA16
A16  SA15
A17  SA14
A18  SA13
A19  SA12
A20  SA11
A21  SA10
A22  SA9
A23  SA8
A24  SA7
A25  SA6
A26  SA5
A27  SA4
A28  SA3
A29  SA2
A30  SA1
A31  SA0

E1  CMD#
E2  START#
E3  EXRDY
E4  EX32#
E5  GND
E6  key
E7  EX16#
E8  SLBURST#
E9  MSBURST#
E10  W/R#
E11  GND
E12  Reserved
E13  Reserved
E14  Reserved
E15  GND
E16  key
E17  BE1#
E18  LA31#
E19  GND
E20  LA30#
E21  LA28#
E22  LA27#
E23  LA25#
E24  GND
E25  key
E26  LA15
E27  LA13
E28  LA12
E29  LA11
E30  GND
E31  LA9
G1  LA7
G2  GND
G3  LA4
G4  LA3
G5  GND
G6  key
G7  SD17
G8  SD19
G9  SD20
G10  SD22
G11  GND
G12  SD25
G13  SD26
G14  SD28
G15  key
G16  GND
G17  SD30
G18  SD31
G19  MREQx#
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Chapter 6 
The Previous Chapter 

The previous chapter provided a functional description of the EISA bus signals. 

This Chapter 

This chapter provides a brief review of the ISA bus master and DMA bus cy-
cles. For a detailed description of this subject matter, refer to the MindShare 
book entitled ISA System Architecture. 

The Next Chapter 

The next chapter provides a detailed description of the EISA CPU and bus mas-
ter bus cycle types. 

Introduction 

In order to define extensions to ISA, the writers of the EISA specification had to 
first document ISA. The following descriptions of ISA bus cycles are based on 
the descriptions found in the EISA specification. 
 
The Bus Clock (BCLK) is supplied to the ISA bus by the system board and de-
fines the time slots (Tstates) that comprise a bus cycle. In order to maintain ISA 
compatibility, the maximum clock rate used for bus cycles on the EISA bus is 
8.33MHz.  

8-bit ISA Slave Device  

An 8-Bit ISA slave device interfaces only to the least-significant eight data bus 
bits and uses only ISA address bus bits SA[19:0]. This is the simplest and slow-
est of the slave devices and was first developed for use with the IBM PC. These 
devices didn't have to be very fast because the PC was based on an Intel 8088 
microprocessor running at 4.77MHz. 



EISA System Architecture 

54 

 
At 4.77MHz, the clock period is 209.64ns and a 0-wait state bus cycle consists of 
four clock cycles (838.6ns). In other words, devices with an access time of up to 
836ns could be interfaced to the microprocessor without incurring any wait 
states. Since the designer must account for the cycle time of DRAMs (typically 
double the access time), not the stated access time, this means that DRAMs 
with an access time of up to 400ns could be interfaced to the microprocessor 
without incurring wait states. 

16-bit ISA Slave Device  

A 16-bit ISA slave device interfaces to sixteen ISA data bus bits and uses ISA 
address bus lines SA[19:0], LA[23:17] and SBHE#. 16-bit devices were devel-
oped for use with the IBM PC-AT. Some of these devices were designed to op-
erate in the original 6MHz version of the IBM PC-AT, while most were 
designed to work with the 8MHz version. 
 
The 6MHz PC-AT could interface with a slave device having an access time of 
up to approximately 332ns and incur no wait states. This being the case, 
DRAMs with an access time of up to approximately 165ns could be accessed 
with 0-wait states.  
 
The 8MHz PC-AT could interface with a slave device having an access time of 
up to approximately 250ns and incur no wait states. DRAMs with an access 
time of up to approximately 125ns could therefore be accessed with 0-wait 
states.  

Transfers With 8-bit Devices 

The ISA bus cycle types utilized to communicate with 8-bit devices include: 
 
• Standard 8-bit device ISA bus cycle – four wait states 
• Shortened 8-bit device bus cycle – one, two, or three wait states 
• Stretched 8-bit device bus cycle – more than four wait states 
 
The steps that follow describe the sequence of events that take place during an 
8-bit bus cycle using the default READY# timing and explains how the default 
timing can be either shortened or stretched. Figure 6-1 illustrates an example 
bus cycle. The step numbers in the text that follows corresponds to the num-
bered reference points in figure 6-1. 
 



Chapter 6: ISA Bus Cycles 

55 

1. The address being presented by the current bus master begins to appear on 
the LA bus at the start of the address phase. This corresponds to the lead-
ing edge of Ts. If the system board is based on an 80286 or 80386 micro-
processor and address pipelining is asserted, the address may actually be 
present on the LA bus prior to the beginning of the bus cycle (as is the case 
in this example). 16-bit ISA memory expansion cards can use the portion of 
the address on the LA bus to perform an early address decode. 8-bit ISA 
expansion cards do not have access to the LA bus and therefore cannot per-
form an early address decode. I/O cards only use the lower 16 address bits 
and therefore cannot take advantage of address pipelining. 

2. BALE is asserted half-way through the address phase, gating the address 
through the system board address latch onto the SA bus. 

3. If this is a write bus cycle, the microprocessor's write data is gated onto the 
SD bus half-way through the address phase. It remains on the SD bus until 
half a BCLK cycle into the next bus cycle (half-way through the address 
phase of the next transfer). 

4. The trailing-edge of BALE (at the beginning of the first data clock period) 
causes the system board address latch to latch the address being output by 
the CPU so that it remains static on the SA bus for the remainder of the bus 
cycle. The addressed slave device can safely complete the decoding process 
during this period. 

5. If this is a memory transaction and the M16# signal is sampled deasserted 
by the system board bus control logic at the end of the address phase, the 
command line (SMRDC# or SMWTC#) is not activated until half-way 
through the first data clock period. If this is an I/O transaction, I/O16# will 
not be sampled until reference point seven to determine if the currently-
addressed device is an 8 or a 16-bit device. 

6. If this is a memory transaction and M16# was sampled deasserted at the 
end of the address phase, M16# is again sampled half-way through the first 
data clock period. The continued deasserted state of M16# indicates that 
the addressed expansion board is an 8-bit device.  

7. The appropriate command line (SMRDC#, SMWTC#, IORC# or IOWC#) is 
asserted half-way through the first data clock period. During a transfer 
with an 8-bit device, the activation of the command line is delayed until the 
midpoint of the first data clock period to allow more time for address de-
code before command line activation. The command line then remains as-
serted until the end of the bus cycle (end of last Tc). 

8. If this is an I/O transaction, the IO16# signal is sampled deasserted by the 
system board bus control logic, indicating that the addressed expansion 
board is an 8-bit device.  

9. Half-way through the second data clock period and half-way through each 
subsequent data clock period, the default ready timer on the system board 
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samples the NOWS# line. If sampled asserted, the CPU READY# line is ac-
tivated and the bus cycle ends on the next rising-edge of BCLK (the end of 
the current data clock period). In this way, an ISA board can terminate a 
bus cycle earlier than the default number of BCLK cycles (wait states) by 
activating NOWS#. 

10. This item does not have a corresponding numbered reference point on the 
timing diagram. A bus cycle addressing an 8-bit ISA device defaults to six 
BCLK cycles (four wait states) if the following two conditions are met: 
a) the bus cycle isn't terminated earlier by the assertion of NOWS#. 
b) CHRDY is asserted when sampled during the first half of the last data 

clock period of the default cycle (first half of the 5th data clock period). 
This causes the duration of an ISA bus cycle when accessing an 8-bit device 
to default to four wait states (unless shortened by NOWS# to three, four, or 
five BCLK cycles, or lengthened by the deassertion of CHRDY. The bus cy-
cle ends at the trailing-edge of the fifth data clock period. 

11. During a read bus cycle, the microprocessor reads the data on the data bus 
at the trailing-edge of the last data clock period (Tc) of the bus cycle and 
the bus cycle is then terminated. The command line (SMRDC#, IORC#, etc.) 
is de-activated at that time. When a write bus cycle terminates, the 
MWTC#, SMWTC# or IOWC# command line is de-activated. Write data 
remains on the SD bus until half-way through the address phase of the next 
bus cycle.  This accommodates the hold time of the device being written to 
and doesn't disturb the device being addressed in the next bus cycle be-
cause the command line for that bus cycle hasn't been activated yet. 
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Figure 6-1. Standard Access to an 8-bit ISA Device 

Transfers With 16-bit Devices 

The ISA bus cycle types utilized to communicate with 16-bit devices include: 
 
• Standard 16-bit device ISA bus cycle (Memory & I/O) — one wait state 
• Shortened 16-bit device ISA bus cycle (Memory only) — zero wait states 
• Stretched 16-bit device ISA bus cycle — more than one wait state 
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Standard 16-bit Memory ISA bus Cycle 

Figure 6-2 illustrates the timing of a bus cycle on the ISA bus when the current 
bus master is communicating with a one wait state 16-bit memory device. Each 
of the numbered steps corresponds to the numbered reference points in figure 
6-2. 
 
1. If the system board is based on an 80286 or 80386 microprocessor and ad-

dress pipelining is asserted, the address is present on the LA bus prior to 
the beginning of the bus cycle. This allows the addressed memory slave to 
start decoding the address early which may speed up access. 

2. BALE is asserted halfway through the address phase. On the rising-edge of 
BALE, 16-bit ISA memory devices can begin to decode the LA lines to de-
termine if the address is for them. When BALE is asserted, the lower por-
tion of the address from the processor (A[19:0]) is transferred through the 
system board's address latch onto SA[19:0]. 

3. The addressed memory board activates M16# as a result of decoding the 
LA lines, indicating to the system board's bus control logic that it is capable 
of handling a 16-bit transfer without data bus steering being performed by 
the steering logic on the system board. 

4. If this is a write bus cycle, the microprocessor's output data is gated onto 
the SD bus half-way through the address phase and remains on the SD bus 
until half a BCLK cycle into the next bus cycle (half-way through the ad-
dress phase of the next bus cycle). 

5. At the end of the address phase, the trailing-edge of BALE causes two 
events to take place: 
a) 16-bit ISA memory devices latch the LA lines so the addressed device is 

not deselected when the LA lines are pipelined with the address for the 
next transaction before the end of the current bus cycle. 

b) the address latch on the system board latches the lower twenty bits of 
the address, SA[19:0], so that they remain static on the SA bus for the 
remainder of the bus cycle. Slave devices can safely decode the SA ad-
dress on the bus on the falling edge of BALE (if they haven’t done so 
already).  

6. The system board's bus control logic samples M16# at the end of the ad-
dress phase to determine if the addressed device can take advantage of the 
MRDC# or MWTC# command lines being asserted immediately. The ap-
propriate command line (MRDC# or MWTC#) is asserted at the leading-
edge of the first data clock period if M16# is sampled asserted. This com-
mand line remains asserted until the end of the bus cycle (end of last Tc). If 
M16# is sampled deasserted, the command line (MRDC# or MWTC#) is ac-
tivated half-way through the first data clock period.  
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7. If M16# wasn’t sampled asserted at the end of the address phase, the sys-
tem board's bus control logic samples M16# a second time at the midpoint 
of the first data clock period to determine if data bus steering is necessary. 
Since this is an access to a 16-bit device, M16# is sampled asserted and 
steering is therefore unnecessary. Also at the midpoint of the first data 
clock period, the default ready timer on the system board samples NOWS#. 
If sampled asserted, the microprocessor's READY# line is asserted and the 
bus cycle terminates at the end of the first data clock period. In this way, a 
16-bit ISA memory board can complete a bus cycle in two BCLK cycles (it 
should be noted, however, that the default ready timer ignores NOWS# 
during I/O bus cycles). 

8. During address pipelining, the microprocessor is free to output the address 
for the next bus cycle during the current bus cycle. Only the upper portion 
of the pipelined address appears on the LA bus at this time because these 
bits are buffered but not latched from the microprocessor's address bus. 
The remainder of the address doesn’t appear on the SA bus until the mid-
point of the address phase in the next bus cycle. 

9. CHRDY is sampled by the default ready timer at the beginning of the sec-
ond data clock period to determine if the device will be ready to complete 
the bus cycle at the end of this BCLK cycle. If the device cannot complete 
the bus cycle by the end of this BCLK cycle, it should deassert CHRDY. If 
CHRDY is sampled deasserted by the default ready timer, it responds by 
extending the bus cycle by adding another data clock period. CHRDY is 
then checked at the beginning of each additional data clock period until the 
device releases CHRDY, indicating that the bus cycle can be completed. 

10. An ISA 16-bit memory bus cycle defaults to three BCLK cycles (one wait 
state) if the bus cycle isn't terminated earlier by the assertion of NOWS# 
and if CHRDY stays asserted throughout the bus cycle. This means that the 
length of an ISA bus cycle when accessing a 16-bit memory card defaults to 
one wait state unless shortened by NOWS# or lengthened by CHRDY. 
READY# is then asserted to the microprocessor, telling it to read the data 
from the data bus (if this is a read transaction). When a memory write bus 
cycle terminates, the MWTC# command line is desasserted, but the data 
remains on the SD bus during the first half of the address phase in the next 
bus cycle. This provides hold time for the device being written to and 
doesn't affect the device being addressed in the next bus cycle because the 
command line hasn't been activated yet. 
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Figure 6-2. Standard Access to a 16-bit ISA Memory Device 
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Standard 16-bit I/O ISA bus Cycle 

Figure 6-3 illustrates the timing of a bus cycle on the ISA bus when the current 
bus master is communicating with a 16-bit I/O device. Each of the numbered 
steps corresponds to the numbered reference points in figure 6-3. 
 
1. If the system board is based on an 80286 or 80386 microprocessor and ad-

dress pipelining is active, the address is present on the LA bus prior to the 
beginning of the bus cycle. The LA bus has no impact on I/O bus cycles 
since A[23:16] always contain zeros during I/O operations. 

2. BALE is asserted halfway through the address phase, gating the address 
through the system board's address latch onto the SA bus. 

3. If this is a write bus cycle, the microprocessor's output data is gated onto 
the SD bus half-way through the address phase and remains on the SD bus 
until half a BCLK cycle into the next bus cycle (half-way through the ad-
dress phase of the next bus cycle). 

4. At the start of the first data clock period, the trailing-edge of BALE causes 
the address latch on the system board to latch the lower twenty bits of the 
address, SA[19:0], so that it remains static on the SA bus for the remainder 
of the bus cycle. Slave devices can safely latch the SA address on the bus on 
the falling edge of BALE (if they haven’t done so already). 

5. The appropriate command line (IORC# or IOWC#) is also asserted at the 
midpoint of the first data clock period. This command line remains as-
serted until the end of the bus cycle (end of last Tc). 

6. At the midpoint of the first data clock period, the default ready timer on 
the system board ignores the NOWS# line (since an I/O device is being ac-
cessed). This is done to prevent two back-to-back I/O write bus cycles from 
accessing the I/O device too quickly. This could violate the I/O write re-
covery time of the I/O device, causing improper operation. 

7. During address pipelining, the microprocessor is free to output the address 
for the next bus cycle during the current bus cycle. Only the upper portion 
of the pipelined address appears at this time on the LA bus because these 
bits are buffered but not latched from the microprocessor's address bus. 
The remainder of the new address does not appear on the SA bus until the 
midpoint of the address phase of the next bus cycle. 

8. IO16# is sampled at the midpoint of the second data clock period to deter-
mine if the I/O device is an 8 or 16-bit device. If sampled asserted, data bus 
steering is not performed and the bus cycle is terminated on the next rising-
edge of BCLK (the end of the second data clock period). The bus cycle is 
not terminated if the CHRDY line is sampled deasserted. 

9. CHRDY is sampled by the default ready timer at the end of the second data 
clock period to determine if the device is ready to complete the bus cycle. If 
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the device cannot complete the bus cycle by the end of the second BCLK 
cycle, it must deassert CHRDY. If CHRDY is sampled deasserted by the de-
fault ready timer, it responds by extending the bus cycle by one data clock 
period. CHRDY is then checked at the beginning of each additional data 
clock period until the device releases CHRDY to indicate that the bus cycle 
can be completed. 

10. An ISA 16-bit I/O bus cycle defaults to three BCLK cycles (one wait state) 
if CHRDY stays asserted throughout the bus cycle. The bus cycle cannot be 
terminated earlier by the assertion of NOWS#. This means that the length 
of an ISA bus cycle when accessing a 16-bit I/O card defaults to one wait 
state unless lengthened by the deassertion of CHRDY. READY# is then as-
serted to the microprocessor, telling it to read the data from the data bus (if 
this is a read transaction). When an I/O write bus cycle terminates, the 
IOWC# command line is de-activated, but the data remains on the SD bus 
until the end of the first half of the address phase in the next bus cycle. This 
accommodates the hold time of the device being written to and doesn't dis-
turb the device being addressed in the next bus cycle because the command 
line for that bus cycle hasn't been activated yet. 
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Figure 6-3. Standard Access to 16-bit I/O Device 
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Zero Wait State ISA Bus Cycle 
Accessing 16-bit Device  

Figure 6-4 illustrates the timing of a bus cycle on the ISA bus when the current 
bus master is communicating with a zero wait state 16-bit device. Note that 
only 16-bit memory devices can complete bus cycles at zero wait states. Each of 
the numbered steps corresponds to the numbered reference points in figure 6-4. 
 
1. In this example, address pipelining is active and the LA address is present 

on the ISA bus prior to the beginning of the bus cycle. This allows the ad-
dressed slave to start decoding the address early. In some cases, this allows 
a device to operate at zero wait states. 

2. BALE is asserted halfway through the address phase. On the rising-edge of 
BALE, 16-bit ISA memory devices can begin to decode the LA lines to de-
termine if the address is for them. When BALE is asserted, the lower por-
tion of the address from the processor is transferred through the system 
board's address latch onto the SA bus. 

3. The addressed memory board asserts M16# as a result of decoding the LA 
lines, indicating to the system board's bus control logic that it is capable of 
handling a 16-bit transfer without data bus steering being performed by 
the steering logic on the system board. 

4. If this is a write bus cycle, the microprocessor's output data is gated onto 
the SD bus half-way through the address phase and remains on the SD bus 
until half a BCLK cycle into the next bus cycle (half-way through the ad-
dress phase of the next bus cycle). 

5. At the end of the address phase, the trailing-edge of BALE causes two 
events to take place: 

a)  16-bit ISA memory devices latch the LA lines so the addressed de-
vice will not be deselected if the LA lines are pipelined before the end 
of the current bus cycle. 
b)  the address latch on the system board latches the lower twenty bits 
of the address, SA[19:0], so that they remain static on the SA bus for 
the remainder of the bus cycle. Slave devices can safely decode the SA 
address on the bus on the falling edge of BALE (if they haven’t done so 
already). 

6. The system board's bus control logic samples M16# at the end of the ad-
dress phase to determine if the addressed device can take advantage of the 
MRDC# or MWTC# command line being asserted immediately. M16# is 
sampled asserted and the appropriate command line (MRDC# or MWTC#) 
is asserted at the leading edge of the first data clock period. This command 
line remains asserted until the end of the bus cycle (end of  Tc). 
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7. If M16# was not sampled asserted the firts time, the system board's bus 
control logic samples M16# a second time at the midpoint of the first data 
clock period to determine if data bus steering is necessary. Since this is an 
access to a 16-bit device, no steering is necessary. Since the M16# line is as-
serted, the default ready timer samples the NOWS# line to determine if the 
bus cycle can end in zero wait states. In this example, M16# is sampled as-
serted, forcing the default ready timer to assert the microprocessor's 
READY# line before the end of the current data clock period. In this way, 
faster ISA memory boards can complete a bus cycle in two rather than 
three BCLK cycles.  

8. Since the LA lines have already done their job, (the addressed device has 
already decoded the LA lines and latched the chip select), the microproces-
sor is free to output the address for the next bus cycle. 

9. During a read, the microprocessor latches the contents of the data bus, 
thereby ending the bus cycle. During a write, the microprocessor ends the 
bus cycle. 
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Figure 6-4. Zero Wait State Access to a 16-bit ISA Memory Device 
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ISA DMA Bus Cycles 

ISA DMA Introduction 

ISA machines use two Intel 8237 DMACs on the system board to implement the 
DMA logic. One of the DMACs is connected to the other in a master/slave con-
figuration using channel zero on the master as the cascade input from the slave. 
Since each 8237 DMAC provides four DMA channels and one on the master is 
used as the cascade input from the slave, the ISA system provides a total of 
seven DMA channels. The four inputs to the slave DMAC are designated as 
channels zero – three, while the three inputs to the master are designated as 
channels five – seven. 
 
In addition, the ISA machine implements the two DMACs in such a fashion 
that the three channels on the master (channels five – seven) are capable of per-
forming 16-bit transfers, while the four channels on the slave (channels zero – 
three) are capable of performing 8-bit transfers. 
 
Each DMA block data transfer can consist of up to 64K individual transfers. 
This limitation is imposed by the 16-bit transfer count register associated with 
each channel. This allows each of the channels to transfer up to 64KB of data. 
The 16-bit channels are also restricted to 64KB transfers because the DMA logic 
cannot increment the memory address across a 64K address boundary. 
 
Each DMA channel can address any memory location within the 16MB range 
from 000000h to FFFFFFh. This limitation is imposed by the combination of the 
16-bit memory address register associated with each channel in the DMAC and 
the 8-bit page register associated with each channel. This pair of registers asso-
ciated with each channel provide a 24-bit memory address capability. 
 
ISA expansion boards can become bus masters if they are connected to one of 
the three 16-bit DMA channels on the master DMAC (channels five – seven) 
and if the channel is programmed as a cascade channel. The ISA board may 
then request the use of the bus through the auspices of the master DMAC on 
the system board. 
 
When a DMAC is bus master, it uses its own clock when executing bus cycles. 
This clock is referred to as the DMA clock and is 1/2 the BCLK frequency. De-
pending on the system design and the selected processor speed, this will yield 
a DMA clock of either 3MHz (6MHz AT), 4MHz (8MHz ISA-compatible ma-
chine), or 4.165MHz (8.33MHz ISA-compatible machine).  
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8237 DMAC Bus Cycle 

The 8237 is built around a state machine with seven possible states, each one 
DMA clock period wide. Table 6-1 lists the clock period for the three possible 
processor speed settings. 
 

Table 6-1. DMA Clock Speeds 
Speed Setting DMA Clock Frequency DMA Clock Period 

6MHz 3MHz 333.3ns 
8MHz 4MHz 250ns 

8.33MHz 4.165MHz 240ns 
 
Prior to receiving a DMA Request, the DMAC is in the idle state (Si). When a 
DREQ is sensed, the DMAC enters a state where it asserts HOLD (Hold Re-
quest) to the microprocessor and awaits the HLDA (Hold Acknowledge). This 
state is called SO (the letter O). The DMAC remains in the SO state until HLDA 
is sensed asserted. 
 
The DMAC can then proceed with the DMA transfer. S1, S2, S3 and S4 are the 
states used to execute a transfer (of a byte or word) between the requesting I/O 
device and system memory. In addition, when accessing a device that is slow to 
respond, a DMA transfer cycle can be stretched by de-asserting the DMAC's 
READY input until the device is ready to complete the transfer. This causes the 
DMAC to insert wait states (Sw), in the bus cycle until READY is asserted 
again. 
 
The actions described in table 6-2 take place during states S1 – S4. 
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Table 6-2. ISA DMA State Table 
State Actions Taken 

S1 During block and demand transfers, the middle byte of the memory ad-
dress, A[15:8], only changes once every 256th transfer. For this reason, 
the DMAC only enters the S1 state every 256th transfer in order to up-
date the middle byte of the address that is contained in the external 
DMA address latch. Starting at the trailing-edge of S1, the middle byte of 
the memory address is output onto data bus pins D[7:0] and is then 
latched into the external DMA address latch during S2. The DMAC also 
asserts AEN, causing the external DMA address latch to output and act-
ing as an enable for the DMA page register addressing. 
 

S2 During S2, the lower byte (A[7:0]) of the memory address is output di-
rectly onto address bus signals A[7:0]. If S2 was preceded by S1, the 
DMAC pulses its ADSTB output, causing the new middle byte of the 
address to be latched into the external DMA address latch. If S2 wasn't 
preceded by S1, ADSTB isn't pulsed, but the DMAC's AEN output is 
asserted. This causes the external DMA address latch to output the pre-
viously latched middle byte and acting as an enable for the DMA page 
register addressing. In addition, DAKn# is asserted to tell the I/O device 
that the transfer is in progress.  

S3 S3 only occurs in a bus cycle if compressed timing hasn't been selected 
for this DMA channel. See text below for a discussion of compressed 
timing. During S3, the MRDC# or the IORC# line is asserted. If the DMA 
channel is programmed for extended writes, the MWTC# or IOWC# line 
is also kept asserted during S3. 

S4 If the DMA channel was not programmed for extended write, the 
MWTC# or IOWC# is asserted at the start of S4. If extended write is se-
lected, the write command line was already asserted at the start of S3. 
The actual read/write takes place at the trailing-edge of S4 when both 
the read and write command lines are de-asserted by the DMAC. This 
completes the transfer of a byte or word between memory and the re-
questing I/O device. 

 
When compressed timing is selected, S3 is eliminated from the DMA transfer 
cycle. The only real purpose of S3 is to allow the read command line to be as-
serted for twice the duration that it is when compressed timing is active. Not all 
memory and I/O devices will tolerate this abbreviated read command dura-
tion, so it must be used cautiously.  
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When extended write is selected, it causes the write command line to be as-
serted during S3 rather than S4, effectively doubling the duration of the write 
command line's assertion period. 
 
It should be obvious that extended write and compressed timing are mutually 
exclusive because S3 is essential for extended write and is eliminated when 
compressed timing is selected. 
 
Table 6-3 illustrates the transfer speeds possible at the three clock speeds under 
the following conditions: 
 
• Compressed timing turned off 
• Compressed timing turned on 
 
The table assumes that the transfer is no more than 256 bytes in length. This 
was assumed for simplicity's sake. Every 256 transfers the DMAC must insert 
an S1 state in the next bus cycle to update the middle byte of the memory ad-
dress (A[15:8]), which must be latched into the external DMA address latch. 
This adds one DMA clock period to the duartion of every 257th bus cycle. 
 

Table 6-3. ISA DMA Transfer Rates 
 Compressed Off Compressed On 

DMA Clock 
Frequency 

3MHz 4MHz 4.165MHz 3MHz 4MHz 4.165MHz 

Transfers per 
Second 

1M/s 1.3M/s 1.39M/s 1.5M/s 2M/s 2.08M/s 

 
When looking at table 6-3, keep in mind that each bus cycle consists of three 
DMA clock cycles with compressed timing turned off and two DMA clock cy-
cles with compressed timing turned on. 
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Chapter 7 
The Previous Chapter 

The previous chapter provided a review of bus master and DMA bus cycles in 
the ISA environment. 

This Chapter 

This chapter provides a detailed description of the EISA CPU and bus master 
bus cycle types. 

The Next Chapter 

The next chapter provides a detailed description of the EISA DMA bus cycle 
types. 

Intro to EISA CPU and Bus Master Bus Cycles 

In order to maintain complete ISA compatibility, ISA bus cycles are executed 
precisely as they are in an ISA machine. These bus cycle types have been de-
scribed in the preceding chapter. 
 
As stated earlier, an Intel x86-compatible processor is capable of executing 
seven types of bus cycles: 
 
• Memory data read and memory instruction read. These two types are actu-

ally identical, reducing the total to six bus cycle types. 
• Memory data write 
• I/O data read 
• I/O data write 
• Interrupt acknowledge 
• Halt or Shutdown (also referred to as the special cycle) 
 
Of these six, only four are ever seen by the expansion boards on the ISA bus: 
• Memory Read 
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• Memory Write 
• I/O Read 
• I/O Write 
 
In an EISA system, the main CPU is capable of performing three variants of 
each of these four bus cycle types when communicating with a device over the 
EISA bus: 
 
• Standard timing 
• Compressed timing (not implemented in current machines) 
• Burst timing 
 
EISA bus masters are capable of executing two of these three variants: 
 
• Standard timing 
• Burst timing 

Standard EISA Bus Cycle 

General 

The standard EISA bus cycle type is based upon a zero wait state bus cycle. 
Unless wait states are inserted by the slave, the transaction completes in two 
BCLK periods. Each wait state adds one additional BCLK period. The follow-
ing formula is used to calculate the total transfer time: 
 
     Total Transfer Time = N * (2+Tw) * (1 BCLK period) 
 
     where: Tw = number of wait states per bus cycle 
                   N = number of bus cycles for overall transfer 
 
As an example, a transfer of 64 doublewords (256 bytes) completes in 15.36 mi-
croseconds for a 32-bit transfer with a 8.33MHz BCLK, while a 16-bit transfer 
completes in 30.72 microseconds. This example assumes that no preempts oc-
cur during the transfer and the addressed slave is a zero wait state device. 
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Analysis of EISA Standard Bus Cycle 

The timing diagram in figure 7-1 illustrates the timing for three bus cycles, the 
first of which has one wait state and the last two are zero wait state bus cycles. 
The numbered steps that follow correspond to the reference points in the illus-
tration. 

 
Figure 7-1. The EISA Standard Bus Cycle 
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1. The first bus cycle after bus grant cannot use address pipelining. After the 
first bus cycle, however, the bus master can use address pipelining to out-
put the address and M/IO# early. 

2. After the bus master (or CPU) has requested and been granted the bus, the 
bus cycle begins on the rising edge of BCLK (the leading-edge of Ts) with 
the assertion of the START# signal by the current bus master. START# re-
mains asserted for a full BCLK cycle (all of Ts). At the leading-edge of 
START#, the bus master or CPU places the address  on the LA bus and byte 
enables and also outputs M/IO#. If address pipelining is active, the ad-
dress, byte enables and M/IO# may be placed on the bus during the previ-
ous bus cycle. W/R# is set to the appropriate state at the beginning of the 
bus cycle. 

3. If a write bus cycle is in progress, the bus master begins to drive the data 
onto the appropriate data paths at the midpoint of Ts. 

4. The addressed EISA slave decodes the address and asserts either EX16# or 
EX32# indicating that it is an EISA device and the data size it's prepared to 
handle. I/O devices should also ensure that the AEN signal is deasserted 
before decoding an address. AEN is asserted by the DMA controller when 
it is placing a valid memory address on the address bus. In order to main-
tain ISA bus master compatibility, an EISA I/O slave should assert IO16# 
as well as EX16# or EX32#. EISA slaves that do not need to maintain ISA 
bus master compatibility do not need to assert IO16#. The system board 
develops M16# from EX16# or EX32# to maintain ISA bus master compati-
bility when communicating with ISA memory slaves. Note that EISA com-
pressed mode is not supported in current implementations of EISA; 
however, if implemented the addressed slave should assert NOWS# prior 
to the end of Ts. 

5. If the addressed slave must latch the address information, it should be 
latched on the trailing-edge of START#. The system board's data bus steer-
ing logic samples the EX16# and EX32# lines to determine if steering is nec-
essary. CMD# is asserted by the system board coincidentally with the 
deassertion of START# by the bus master. Only the system board drives the 
CMD# line. CMD# then remains asserted until the end of the bus cycle. If 
support for EISA compressed bus cycles were implemented, the main CPU 
logic would sample NOWS# at the trailing-edge of start to determine if the 
addressed slave supports EISA compressed mode bus cycles.  

6. EXRDY is sampled at the falling edge of every BCLK after CMD# is as-
serted. If sampled deasserted, the bus cycle is extended by one wait state 
(an additional Tc). Designers of EISA expansion cards are guaranteed that 
the address presented on the LA bus, the byte enable lines and the state of 
M/IO# will remain static until the midpoint of the first Tc period of the bus 
cycle. 
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7. If EXRDY is sampled asserted at the midpoint of Tc, the bus cycle is termi-
nated at the end of Tc. If the current bus master has another bus cycle to 
perform and it uses address pipelining, the address for the next bus cycle is 
placed on the LA bus, the byte enable lines and M/IO#. 

8. After EXRDY is sampled asserted at the midpoint of Tc, the bus cycle is 
terminated at the end of the BCLK cycle. The system board logic deasserts 
the CMD# signal. If a read bus cycle is in progress, the bus master reads the 
data from the data bus. If a write bus cycle is in progress, the bus master 
ends the bus cycle but continues to drive the data onto the data bus until 
the midpoint of Ts of the next bus cycle. This is done to ensure that the 
hold time for the currently-addressed device is satisfied.  

Performance Using EISA Standard Bus Cycle 

Assuming that the current bus master and the currently-addressed slave are 
both 32-bit devices, the BCLK frequency is 8.33MHz, and the bus master per-
forms a series of 32-bit transfers, the transfer rate would be 16.66MB/second: 
 
 120ns per BCLK cycle x 2 BCLK cycles per transfer 
 = 240ns per transfer, divided into one second 
 = 4.166M transfers/second, at 4 bytes/transfer 
 = 16.66MB/second 
 
If the currently-addressed slave is a 16-bit device, the transfer rate would be 
8.33MB/second. 

Compressed Bus Cycle 

General 

To the authors’ knowledge, currently-available EISA chipsets do not support 
the EISA compressed bus cycle. For this reason, a detailed analysis of the com-
pressed bus cycle is reserved for a future printing. 
 
Only the main CPU can utilize EISA compressed bus cycles when communicat-
ing with EISA memory or I/O slaves that support compressed mode. Using the 
compressed bus cycle, the CPU can complete a transfer every 1.5 BCLK cycles. 
The following formula may be used to calculate the overall transfer rate when 
transferring a block of data between the main CPU and a slave that supports 
compressed bus cycles: 
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 Total Transfer = N * (1.5 BCLK periods) 
 
 where: N = the total number of bus cycles for the overall block  
       transfer 
 
As an example, a transfer of  64 doublewords (256 bytes) completes in 11.52 
microseconds for a 32-bit transfer with a 8.33MHz BCLK, while a 16-bit trans-
fer completes in 23.04 microseconds. This example assumes that no preempts 
occur during the transfer and that the addressed slave is a zero wait state de-
vice. 
 
Using the compressed bus cycle, the CPU presents a new address every 1.5 
BCLK periods (instead of two) and the system board shortens the duration of 
the CMD# assertion period to one-half of a BCLK period.  
 
If a slave supports compressed bus cycles, it must assert NOWS# prior to the 
end of Ts. The slave must not de-assert EXRDY after asserting NOWS#. If the 
system board samples NOWS# asserted at the leading-edge of CMD# and the 
system board design supports compressed mode, the CMD# pulse width is 
shortened to .5 BCLK periods. Since the main CPU logic might not support 
compressed mode, or the current bus master might not be the main CPU, the 
slave must be prepared to accept CMD# with a duration of one BCLK or 
longer. 

Performance Using Compressed Bus Cycle 

If both the main CPU and the currently-addressed slave support compressed 
mode, the BCLK frequency is 8.33MHz, and both the master and the salve are 
32-bit devices, the transfer rate for a block data transfer would be 
22.22MB/second: 
 
 120ns per BCLK cycle x 1.5 BCLK cycles per transfer 
 = 180ns per transfer, divided into one second 
 = 5.55M transfers/second, at 4 bytes/transfer 
 = 22.22MB/second 
 
If the currently addressed slave is a 16-bit device, the transfer rate would be 
11.11MB/second. 

Burst Bus Cycle 
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General 

A burst transfer is used to transfer blocks of data between the current bus mas-
ter and EISA memory. A burst must consist of all reads or all writes. Reads and 
writes may not be mixed within a burst. In other words, the state of the W/R# 
bus cycle definition line may not be changed during a burst. After the initial 
transfer in a block data transfer, each subsequent EISA Burst bus transfer can 
be completed in one BCLK period. The initial transfer requires the time periods 
consisting of Ts and Tc to transfer the first data item and for the master and 
slave to agree to use burst mode for the subsequent transfers. Unless wait states 
are inserted by the slave, each subsequent transfer can then be completed in 
one BCLK period. Each wait state adds one additional BCLK period. The fol-
lowing formula is used to calculate the total transfer time: 
 
     Total Transfer Time = (1 + Twi + N) * one BCLK period 
 
     where: Twi = wait states inserted per transfer 
                  N = number of bus cycles for overall transfer 
 
As an example, a transfer of  64 doublewords (256 bytes) completes in 7.8 mi-
croseconds for a 32-bit transfer with a 8.33MHz BCLK, while a 16-bit transfer 
completes in 15.6 microseconds. This example assumes that no preempts occur 
during the transfer and the addressed slave is a zero wait state device. 

Analysis of EISA Burst Transfer 

The timing diagram in figure 7-2 illustrates the timing for five transfers per-
formed using burst mode. The following numbered steps correspond to the 
reference points in the illustration. 
 
A 16-bit burst transfer is identical with the exception that EX16# is generated 
by the slave instead of EX32#. 
 
1. The current bus master can use address pipelining to output the first ad-

dress and M/IO# early. 
2. At the beginning of the first bus cycle in the transfer, the current EISA bus 

master activates the START# signal. Assertion of START# indicates that the 
bus master has placed a valid address and bus cycle definition on the bus. 
The EISA bus controller (EBC) on the system board samples START# as-
serted and recognizes that an EISA bus master, rather than an ISA bus mas-
ter, has initiated a bus cycle. In response, the EBC generates BALE during 
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Ts. This is done in case the EISA bus master is addressing an ISA device. In 
addition, the bus master sets the byte enable lines and W/R# to the appro-
priate state. W/R# remains in the selected state (write or read) throughout 
the burst transfer. 

3. If this is a write transfer, the bus master starts to drive the data onto the 
data bus at the midpoint of Ts. 

4. At the end of Ts, the current bus master and the system board logic sample 
EX16# and EX32#. The assertion of either of these signals indicates that the 
currently-addressed device is an EISA device and what data paths it is ca-
pable of using. The bus master deasserts START# and the system board 
logic asserts CMD# to indicate that the data phase has begun. If the bus 
master is capable of using burst transfers, it samples SLBURST# to deter-
mine if the addressed slave also supports burst. In this example, SLBURST# 
is sampled asserted, indicating that the slave supports burst mode. 

5. In response to sampling SLBURST# asserted, the bus master asserts 
MSBURST# at the midpoint of Tc to indicate to the slave that it also sup-
ports burst mode and will use it for the remaining transfers in the burst. 
Also, the bus master samples EXRDY at the midpoint of Tc to determine if 
the addressed slave will be ready to complete the first transfer at the end of 
the current Tc. In this example, EXRDY is sampled asserted, indicating that 
the first transfer can be completed at the end of this Tc period. In response. 
the bus master pipelines out the second address starting at the midpoint of 
Tc. 

6. At the end of the first Tc period, the bus master completes the first transfer 
in the burst. If a read burst is in progress, the bus master reads the data 
from the appropriate data paths. If a write burst is in progress, the bus 
master starts to drive the data for the second transfer onto the appropriate 
data paths. The slave samples MSBURST# at the end of each Tc period to 
determine if the bus master will use burst mode for the remaining trans-
fers. In this example, MSBURST# is sample asserted, so the burst transfer 
continues. 

7. At the midpoint of the second Tc, the bus master samples EXRDY to de-
termine if the slave will be ready to complete the second transfer at the end 
of this Tc period. In this example, it is sampled asserted, indicating that the 
slave will be ready. In response, the bus master begins to drive the third 
address out at the midpoint of Tc. 

8. At the end of the second Tc, the slave samples MSBURST# again to deter-
mine if the bus master is still bursting. The asserted state indicates that it is. 
The bus master completes the second transfer. If a read burst is in progress, 
the bus master reads the data from the appropriate data paths. If a write 
burst is in progress, the bus master starts to drive the data for the third 
transfer onto the appropriate data paths.  
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9. At the midpoint of the third Tc, the bus master samples EXRDY to deter-
mine if the slave will be ready to complete the third transfer at the end of 
this Tc period. In this example, EXRDY is sampled deasserted, indicating it 
will not be ready. This causes the bus master to insert a wait state of one Tc 
duration to stretch the data transfer time for the third transfer. If a read 
transfer is in progress, the bus master doesn’t read the third transfer's data 
from the bus at the end of this Tc. If a write transfer, the bus master contin-
ues to drive the data for the third transfer onto the data bus during the next 
Tc. The bus master pipelines out the address for the fourth transfer, how-
ever, starting at the midpoint of the third Tc period. 

10. At the midpoint of the fourth Tc, the bus master samples EXRDY to deter-
mine if the slave will be ready to complete the third transfer at the end of 
this Tc period. Since EXRDY is sampled asserted, it will be ready. The bus 
master does not pipeline out the address for the fifth transfer yet and con-
tinues to drive the data for the third transfer onto the data bus. 

11. The bus master completes the third transfer. If a read burst is in progress, 
the bus master reads the data from the appropriate data paths. If a write 
burst is in progress, the bus master starts to drive the data for the fourth 
transfer onto the appropriate data paths. 

12. At the midpoint of the fifth Tc period, the bus master samples EXRDY# to 
determine if the slave will be ready to end the fourth transfer at the end of 
the current Tc period. Since EXRDY is sampled asserted, the slave will be 
ready to end the transfer. The bus master also pipelines out the fifth ad-
dress at the midpoint of Tc.  

13. The bus master completes the fourth transfer. If a read burst is in progress, 
the bus master reads the data from the appropriate data paths. If a write 
burst is in progress, the bus master starts to drive the data for the fifth 
transfer onto the appropriate data paths. 

14. At the midpoint of the sixth Tc, the bus master samples EXRDY# to deter-
mine if the slave will be ready to end the fifth transfer at the end of the cur-
rent Tc period. Since EXRDY is sampled asserted, the slave will be ready to 
end the transfer. Since this is the end of the sample burst, the bus master 
de-activates MSBURST# to inform the slave that the last transfer of the 
burst is in progress. In this example, the bus master pipelines out the next 
address at the midpoint of Tc. In this example, the bus master is addressing 
a device other than the memory slave, causing the slave to release 
SLBURST#. 

15. At the end of the sixth Tc period, the bus master completes the last transfer 
of the burst. If a read burst is in progress, the bus master reads the data 
from the appropriate data paths. If a write burst is in progress, the bus 
master ends the transfer and ceases to drive the data bus. This completes 
the example burst transfer. 



EISA System Architecture 

80 

16. The bus cycle following the burst is a standard EISA bus cycle. Since the 
bus master is setting W/R# low, it is a read. The bus master samples 
EXRDY asserted at the midpoint of Tc and reads the data from the data bus 
at the end of Tc and ends the bus cycle. 

17. The next bus cycle is also a standard EISA bus cycle. The high on W/R# in-
dicates that a write is in progress. The bus master begins to drive the data 
onto the data bus at the midpoint of Ts, samples EXRDY asserted at the 
midpoint of Tc, and ends the bus cycle at the end of Tc. 
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Figure 7-2. The EISA Burst Transfer 
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Performance Using Burst Transfers 

Once a 32-bit bus master and a 32-bit slave have switched into burst mode, the 
second through the last transfers may be completed at the following rate: 
 
 8.33MHz BCLK = 120ns per BCLK cycle 
 1 second/120ns per transfer = 8.33M transfers/second 
 8.33M transfers/second x 4 bytes per transfer = 33.33MB/second 
 
If the bus master and/or the slave are 16-bit devices, the maximum transfer 
rate would be 16.66MB/second. 

DRAM Memory Burst Transfers 

The addresses output by the bus master when bursting to or from Page Mode 
or Static Column (SCRAM) memory must be within a 1024 byte DRAM mem-
ory row (address lines LA[31:10] cannot change during the burst). The ad-
dresses within the burst do not have to be sequential. They only have to be 
within the same row. To change DRAM rows, the burst transfer must be termi-
nated by the bus master by setting MSBURST# deasserted on the last cycle in 
the row, and the burst sequence is then restarted within a new row.  

Downshift Burst Bus Master 

A downshift burst bus master is a 32-bit burst bus master that can convert to a 
16-bit burst bus master on-the-fly. In other words, if the bus master samples 
EX16# and SLBURST# asserted at the end of Ts, it automatically adjusts itself to 
only use the lower two data paths during the burst. The bus master is responsi-
ble for copying data to the appropriate data paths during the burst. The system 
board data bus steering logic will not take care of data copying. At the start of 
the first transfer in the burst, the downshift bus master must indicate its ability 
to downshift by setting MASTER16# asserted while START# is asserted (in 
other words, for the duration of the address phase). 
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Chapter 8 
The Previous Chapter 

The previous chapter described the bus cycle types that may be run by the 
main CPU or an EISA bus master. 

This Chapter 

This chapter describes the EISA DMA capability. This includes a description of 
the EISA DMA bus cycle types and other capabilities of the EISA DMA control-
ler. 

The Next Chapter 

The next chapter provides an introduction to the bus structure hierarchy in a 
typical EISA system. It describes the distribution of functions between the host 
bus, EISA bus and the X-bus on the typical EISA system board and the relation-
ship of the functional areas to each other. 

DMA Bus Cycle Types 

Introduction 

The EISA DMA controller incorporates seven DMA channels, each capable of 
performing 8, 16 or 32-bit transfers. In addition, each DMA channel may be in-
dividually programmed to utilize one of four types of bus cycles when per-
forming data transfers between an I/O device and memory. The following 
sections describe the bus cycle types and other DMA improvements. Detailed 
timing diagrams and register-level programming information may be found in 
the EISA specification. 
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Compatible DMA Bus Cycle 

Description 

Each of the seven DMA channels is default-programmed to use ISA-compatible 
DMA bus cycles to transfer data between an I/O device and memory. As in an 
ISA machine, channels zero – three are default-programmed for 8-bit transfers, 
while channels five – seven are default programmed for 16-bit transfers. Any 
DMA channel may be re-programmed to perform 8, 16, or 32-bit transfers us-
ing the ISA-compatible bus cycle. 
 
When programmed to use ISA-compatible DMA bus cycles, a transfer is per-
formed  every eight BCLK periods. Table 8-1 defines the duration of key sig-
nals during an ISA-compatible DMA bus cycle.  
 

Table 8-1. The DMA ISA-Compatible Bus Cycle 
Event Duration 

Memory address present 8.0 BCLKs 
Duration of data transfer period during a memory to 
IO transfer (CMD# active) 

4.5 BCLKs 

Duration of MRDC# during memory to IO transfer 4.5 BCLKs 
Duration of IORC# during I/O to memory transfer 6.5 BCLKs 
Duration of IOWC# during a memory to IO transfer 4.0 BCLKs 
Duration of MWTC# during I/O to memory transfer 4.0 BCLKs 

 
The duration of the key signals illustrated in table 8-1 defines the amount of 
time the memory and I/O device have to recognize that they are being ad-
dressed and to either accept or output data. Comparing this table to the tables 
found in the sections on the other three DMA bus cycle types, it is clear that the 
amount of time allotted for address decode and data movement becomes in-
creasingly shorter for the faster bus cycle types. 

Performance and Compatibility 

Table 8-2 defines the data transfer rates when a DMA channel is programmed 
to use the ISA-compatible DMA bus cycle to transfer data. 
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Table 8-2. ISA-Compatible Transfer Rates 
I/O Device Size Transfer Rate 

8-bit 1.0416MB/second 
16-bit 2.0833MB/second 
32-bit 4.1666MB/second 

 
When programmed to use the ISA-compatible DMA bus cycle, a DMA channel 
may be used to transfer data between an ISA-compatible I/O device and mem-
ory. 

Type A DMA Bus Cycle 

Description 

When programmed to use Type A DMA bus cycles, a transfer is performed  
every six BCLK periods. Table 8-3 defines the duration of key signals during a 
Type A DMA bus cycle.  
 

Table 8-3. The DMA Type A Bus Cycle 
Event Duration 

Memory address present 6.0 BCLKs 
Duration of data transfer period during a memory to IO transfer 
(CMD# active) 

3.5 BCLKs 

Duration of IORC# during I/O to memory transfer 4.5 BCLKs 
Duration of IOWC# during a memory to IO transfer 3.0 BCLKs 

 
The duration of the key signals illustrated in table 8-3 defines the amount of 
time the memory and I/O device have to recognize that they are being ad-
dressed and to either accept or output data. When performing Type A bus cy-
cles, the DMA controller uses W/R# rather than MRDC# or MWTC# to indicate 
the type of memory operation,. 

Performance and Compatibility 

Table 8-4 defines the data transfer rates when a DMA channel is programmed 
to use the Type A DMA bus cycle to transfer data. 
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Table 8-4. Type A Transfer Rates 
I/O Device Size Transfer Rate 

8-bit 1.388MB/second 
16-bit 2.777MB/second 
32-bit 5.555MB/second 

 
When a DMA channel is programmed to use the Type A DMA bus cycle to 
transfer data, the channel may be used to transfer data between fast, EISA 
memory and an I/O device designed for Type A transfers. In addition, many 
older, ISA I/O devices may also work with a channel programmed for Type A 
bus cycles. This is because the Type A transfer does not involve a significant 
amount of compression compared to the ISA-compatible bus cycle. Compatibil-
ity may be determined by testing. 

Type B DMA Bus Cycle 

Description 

When programmed to use Type B DMA bus cycles, a transfer is performed  
every four BCLK periods. Table 8-5 defines the duration of key signals during a 
Type B DMA bus cycle.  
 

Table 8-5. The DMA Type B Bus Cycle 
Event Duration 

Memory address present 4.0 BCLKs 
Duration of data transfer period during a memory to IO transfer 
(CMD# active) 

2.5 BCLKs 

Duration of IORC# during I/O to memory transfer 3.5 BCLKs 
Duration of IOWC# during a memory to IO transfer 2.0 BCLKs 

 
The duration of the key signals illustrated in table 8-5 defines the amount of 
time the memory and I/O device have to recognize that they are being ad-
dressed and to either accept or output data. When performing Type B bus cy-
cles, the DMA controller uses W/R# rather than MRDC# or MWTC# to indicate 
the type of memory operation,. 
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Performance and Compatibility 

Table 8-6 defines the data transfer rates when a DMA channel is programmed 
to use the Type B DMA bus cycle to transfer data. 
 

Table 8-6. Type B Transfer Rates 
I/O Device Size Transfer Rate 

8-bit 2.083MB/second 
16-bit 4.166MB/second 
32-bit 8.333MB/second 

 
When a DMA channel is programmed to use the Type B DMA bus cycle to 
transfer data, the channel may be used to transfer data between fast, EISA 
memory and an I/O device designed for Type B transfers. In addition, some 
older, ISA I/O devices may also work with a channel programmed for Type B 
bus cycles. Although the Type B transfer involves a significant amount of com-
pression compared to the ISA-compatible bus cycle, some ISA I/O devices may 
be fast enough to function correctly at this speed. Compatibility may be deter-
mined by testing. 

Type C DMA Bus Cycle 

Description 

The Type C DMA bus cycle is very similar to the burst bus cycle run by a burst-
ing EISA bus master or the main CPU. When the first bus cycle in a series is ini-
tiated, the DMA controller samples SLBURST# to determine if the addressed 
memory supports burst mode. In response to SLBURST# assertion, the control-
ler then activates MSBURST# to indicate bursting will be used to transfer the 
data block. As with the other DMA bus cycle types, the controller uses the 
combination of DAKn# and either the IORC# or IOWC# line to address the I/O 
device. A byte, word or doubleword of data is transferred every BCLK cycle. 

Performance and Compatibility 

Table 8-7 defines the data transfer rates when a DMA channel is programmed 
to use the Type C DMA bus cycle to transfer data. 
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Table 8-7. Type C Transfer Rates 
I/O Device Size Transfer Rate 

8-bit 8.33MB/second 
16-bit 16.66MB/second 
32-bit 33.33MB/second 

 
When a DMA channel is programmed to use the Type C DMA bus cycle to 
transfer data, the channel may only be used to transfer data between fast, EISA 
memory and an I/O device designed for Type C transfers. No ISA I/O devices 
will work with a channel programmed for Type C bus cycles.  

EISA DMA Transfer Rate Summary 

Table 8-8 indicates the maximum data transfer rates achievable for each DMA 
bus cycle type, and the expansion devices that are compatible with the bus cy-
cle type. 
 

Table 8-8. EISA DMA Transfer Rates 
Transfer 

Type 
DMA Cycle 

Type 
Transfer Rate 

(MB/sec) 
 

Compatibility 

ISA-compatible 8-bit 1.0 all ISA 
 16-bit 2.0 all ISA 
Type A 8-bit 1.3 most ISA 
 16-bit 2.6 most ISA 
 32-bit 5.3 EISA-only 
Type B 8-bit 2.0 some ISA 
 16-bit 4.0 some ISA 
 32-bit 8.0 EISA-only 
Type C (Burst) 8-bit 8.2 EISA-only 
 16-bit 16.5 EISA-only 
 32-bit 33.0 EISA-only 

Other DMA Enhancements 

Addressing Capability 

The EISA DMA controller generates full 32-bit addresses, giving it the ability to 
transfer data to or from memory throughout the full 4GB address range. 
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Preemption 

When a DMA channel is programmed for Type A, Type B, or Type C bus cy-
cles, it may be preempted by the CAC if another device requires the use of the 
bus. When a channel is programmed for ISA-compatible DMA bus cycles, 
however, it cannot be preempted. This means that it can prevent other devices 
from receiving the use of the bus on a timely basis if the channel is pro-
grammed for a lengthy block or demand mode transfer. Care should therefore 
be exercised. 
 
When the CAC detects another device that requires the use of the bus, it re-
moves the bus grant from the DMA controller. The active DMA channel re-
leases the bus within four microseconds.  

Buffer Chaining 

The EISA DMA controller's buffer chaining function permits the implementa-
tion of scatter write and gather read operations. A scatter write operation is one 
in which a contiguous block of data is read from an I/O device and is written 
to two or more areas of memory, or buffers. A gather read operation reads a 
stream of data from several blocks of memory, or buffers, and writes it to an 
I/O device. 
 
The programmer writes the start address of the first memory buffer to the 
DMA channel and sets the channel's transfer count equal to the number of 
bytes, words, or doublewords to be transferred to or from the first buffer. The 
programmer then enables chaining mode, causing the DMA channel to load the 
start memory address and transfer count into another set of channel registers, 
known as the current registers. The programmer then writes the start address 
of the second memory buffer to the DMA channel and sets the channel's trans-
fer count equal to the number of bytes, words, or doublewords to be trans-
ferred to or from the second buffer.  
 
When the DMA channel has exhausted the first transfer count, the channel 
automatically loads the current registers from the secondary registers and gen-
erates either TC or an IRQ13. If the channel was programmed by the main 
CPU, IRQ13 is generated. If the channel was programmed by an EISA bus mas-
ter, TC is generated instead. The TC or IRQ13 informs the bus master or micro-
processor that the first buffer transfer has been completed, the second buffer 
transfer is in progress and the start address and transfer count for the third 
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buffer transfer (if there is one) should be written to the channel's registers. Up-
dating these registers causes the controller to de-activate TC or IRQ13. 
 
The channel generates a Transfer Complete (TC) when the transfer count is ex-
hausted and the channel's registers have not been reloaded. 

Ring Buffers 

The EISA DMA controller allows the programmer to implement a ring buffer. 
If enabled, the ring buffer reserves a fixed range of memory to be used for a 
channel. The start and end address of the ring buffer are defined by the start 
memory address and the transfer count. As data is read from the I/O device it 
is written into the ring buffer in memory. When the DMA transfer has ex-
hausted its transfer count, the channel automatically reloads the start memory 
address and transfer count registers and continues with the DMA transfer from 
the I/O device. The new data is written into memory at the start of the ring 
buffer, over-writing the older information that has already been read by the 
microprocessor. As the programmer reads information that was deposited in 
the ring buffer by the channel, the programmer must update the channel's stop 
register with the memory address of the next location that has not yet been 
read by the microprocessor. The stop register prevents the DMA channel from 
over-writing information that the microprocessor hasn't read yet. 

Transfer Size 

Each DMA channel can be programmed to perform either 8, 16 or 32-bit trans-
fers. 
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Chapter 9 
The Previous Chapter 

The previous chapter, “EISA DMA,” described the bus cycle types supported 
by the EISA DMA controller. In addition, other EISA DMA enhancements were 
also described. 

This Chapter 

In this chapter, EISA automatic system configuration is discussed. This in-
cludes a description of the slot-specific I/O address space, the EISA product 
identifier, and the EISA card control ports. The EISA configuration process and 
board description files are also covered. 

The Next Chapter 

The next chapter begins Part two of the book. In Part two, the Intel EISA chip 
set and its relationship to the major system components are discussed. 

ISA I/O Address Space Problem 

When the original IBM PC and XT were designed, IBM defined the use of the 
processor's 64KB I/O address space as shown in table 9-1. 
 

Table 9-1. IBM PC and XT I/O Address Space Usage 
I/O Address Range Reserved For 

0000h – 00FFh 256 locations set aside for I/O devices integrated onto the 
system board. 

0100h – 03FFh 768 locations set aside for I/O expansion cards. 
0400h – FFFFh Reserved. Do not use. 

 
I/O addresses above 03FFh could not be used due to the inadequate I/O ad-
dress decode performed by many of the early I/O expansion cards. The card's 
I/O address decoder inspects A[9:5] to determine which of twenty-four blocks 
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of I/O space is currently being addressed. Each block consists of 32 locations. 
Figure 9-1 illustrates these twenty-four address ranges. If the currently-
addressed I/O location is within the block of thirty-two locations assigned to 
the I/O expansion card, the card's logic examines address bits A[4:0] to deter-
mine if one of up to thirty-two I/O ports on the addressed expansion card is 
being addressed.  
 

 
Figure 9-1. ISA Expansion I/O Ranges 
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The I/O address decoders on the expansion cards for the PC, XT and AT only 
looked at address bits A[9:5], ignoring bits A[15:10]. The I/O address range as-
signed for usage by expansion cards is 0100h – 03FFh. Bits A9 and A8 would 
therefore be either  01b (0100h – 01FFh range), 10b (0200h – 02FFh range), or 
11b (0300h – 03FFh range) when an ISA I/O card is being addressed. When the 
microprocessor places any address within the expansion I/O address range on 
the address bus, an I/O expansion card may respond.  
 
As an example, assume that a machine has two expansion cards installed. One 
of them performs an inadequate address decode using just A[9:5] and has eight 
registers residing at I/O ports 0100h – 0107h. The other card performs a full 
decode using A[15:5] and has four registers residing at I/O ports 0500h – 
0503h. Now assume that the microprocessor initiates a one byte I/O read from 
I/O port 0500h. The address placed on the bus is shown in table 9-2.  
 

Table 9-2. Example I/O Address 
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

 
The board that occupies the 0500h – 0503h range looks at A[15:5] and deter-
mines that the address is within the 0500h – 051Fh block. It then looks at A[4:0] 
and determines that location 0500h is being addressed. Since this is an I/O read 
bus cycle, the card places the contents of location 0500h on the lower data path 
(this is an even address). 
 
At the same time, the board that occupies the 0100h – 0107h range looks at 
A[9:5], a subset of the address seen by the other card's address decoder, and 
determines that the address appears to be within the 0100h – 01FFh block. It 
then looks at A[4:0] and determines that location 0100h is being addressed. 
Since this is an I/O read bus cycle, the card places the contents of location 
0100h on the lower data path (this is an even address). 
 
Since both cards are driving a byte of data onto the lower data path, SD[7:0], 
data bus contention is occurring. This results in garbage data and possible 
hardware damage because two separate current sources are driving the lower 
data path. The problem occurs because the card residing in the 0100h – 0107h 
range looks at A[9:8] and thinks that this address is within the 0100h – 01FFh 
range. If the card were designed to perform a full address decode using 
A[15:5], the problem could have been avoided. 
 
Addresses above 03FFh may be used as long as A[9:8] are always 00b, thus en-
suring that the address will not appear to be in the 0100h – 01FFh, 0200h – 
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02FFh, or 0300h – 03FF ranges. Table 9-3 illustrates the usability or unusability 
of address ranges above 03FFh. 
 

Table 9-3. Usable and Unusable I/O Address Ranges Above 03FFh 
I/O Address Range Usable or Unusable 

x000h – x0FFh usable 
x100h – x1FFh Unusable. Appears to be 0100h – 01FFh 
x200h – x2FFh Unusable. Appears to be 0200h – 02FFh 
x300h – x3FFh Unusable. Appears to be 0300h – 03FFh 
x400h – x4FFh usable 
x500h – x5FFh Unusable. Appears to be 0100h – 01FFh 
x600h – x6FFh Unusable. Appears to be 0200h – 02FFh 
x700h – x7FFh Unusable. Appears to be 0300h – 03FFh 
x800h – x8FFh usable 
x900h – x9FFh Unusable. Appears to be 0100h – 01FFh 

xA00h – xAFFh Unusable. Appears to be 0200h – 02FFh 
xB00h – xBFFh Unusable. Appears to be 0300h – 03FFh 
xC00h – xCFFh usable 
xD00h – xDFFh Unusable. Appears to be 0100h – 01FFh 
xE00h – xEFFh Unusable. Appears to be 0200h – 02FFh 
xF00h – xFFFh Unusable. Appears to be 0300h – 03FFh 

 
Note: where x = any hex digit 
 
The next section describes how the EISA specification defines the usage of 
these allowable address ranges above 03FFh. 

EISA Slot-Specific I/O Address Space 

The EISA specification expands the number of I/O locations available to sys-
tem and expansion board designers and also implements automatic configura-
tion of both system and expansion boards.  
 
In addition to the 256 I/O locations available for ISA system board I/O devices 
(from 0000h – 00FFh), the EISA system board has 768 additional I/O locations 
available for usage by system board I/O devices. Each EISA expansion slot and 
each embedded EISA device has 1024 locations of slot-specific I/O address 
space available for use (in addition to the 768 bytes of ISA I/O address space 
allocated to ISA expansion boards). An embedded device is an EISA I/O de-
vice that is integrated onto the motherboard. In all operational respects, it acts 
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as if it's installed in an EISA expansion slot. Table 9-4 defines the I/O address 
assignment for the EISA system board and the expansion board slots.  

Table 9-4. EISA I/O Address Assignment 
I/O Address 
Range (hex) 

 
Reserved For 

 
Range Reserved For 

0000 – 00FF EISA/ISA system board I/O devices System Board 
0100 – 03FF ISA expansion cards ISA cards 
0400 – 04FF EISA system board I/O System Board 
0500 – 07FF alias of ISA range; do not use  
0800 – 08FF EISA system board I/O System Board 
0900 – 0BFF alias of ISA range; do not use  
0C00 – 0CFF EISA system board I/O System Board 
0D00 – 0FFF alias of ISA range; do not use  
1000 – 10FF Slot 1 I/O  EISA slot one 
1100 – 13FF alias of ISA range; do not use  
1400 – 14FF Slot 1 I/O EISA slot one 
1500 – 17FF alias of ISA range; do not use  
1800 – 18FF Slot 1 I/O EISA slot one 
1900 – 1BFF alias of ISA range; do not use  
1C00 – 1CFF Slot 1 I/O EISA slot one 
1D00 – 1FFF alias of ISA range; do not use  
2000 – 20FF Slot 2 I/O  EISA slot two 
2100 – 23FF alias of ISA range; do not use  
2400 – 24FF Slot 2 I/O EISA slot two 
2500 – 27FF alias of ISA range; do not use  
2800 – 28FF Slot 2 I/O EISA slot two 
2900 – 2BFF alias of ISA range; do not use  
2C00 – 2CFF Slot 2 I/O EISA slot two 
2D00 – 2FFF alias of ISA range; do not use  

repeated for 
every X000–
XFFF range 

  

 
In order to implement the slot-specific I/O address ranges illustrated in table 
9-4, the AEN logic on the system board in an ISA system must be modified. 
Figure 9-2 illustrates the AEN decoder located on the EISA system board. 
 
In an ISA system, the DMAC's AEN output is connected to the AEN pin on all 
ISA expansion slots in parallel. During non-DMA operation, AEN is low, al-
lowing all memory and I/O devices to decode addresses normally. When the 
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DMA controller, or DMAC, is bus master and is placing a memory address on 
the bus, it asserts AEN (Address Enable). When I/O cards detect AEN high, 
the DMAC is placing a memory address on the bus and the I/O cards ignore 
the address. When a memory card detects AEN asserted, it decodes the address 
on the bus to determine if the DMAC is addressing it. 
 
In an EISA system, when the DMAC is bus master and is addressing memory, 
it asserts AEN, causing the system board AEN decoder (see figure 9 - 2) to as-
sert all of its AEN outputs. Each AEN output is connected to the AEN pin on a 
separate connector. In this way, the AEN decoder emulates AEN operation in 
an ISA machine. No I/O devices should decode the address. 
 
During non-DMA memory bus cycles, the DMAC’s AEN output is deasserted, 
causing the system board AEN decoder to set all of its AEN outputs low. This 
permits all memory cards to decode addresses normally. 
 
During non-DMA I/O bus cycles, M/IO# is low, enabling the system board 
AEN decoder to use the upper digit of the I/O address, A[15:12], to select 
which of its AEN outputs to set low. If either A8 or A9 is set to one, however, 
the I/O address is within the range of 768 locations set aside for ISA expansion 
I/O devices. The AEN decoder sets all of its AEN outputs low, allowing all of 
the installed I/O cards to decode the address. When a card's AEN line is 
sensed low, an EISA I/O device that uses slot-specific I/O address space 
should examine A8 and A9 to ensure both are zero before decoding A[11:0]. If 
either bit is high, the bus master is addressing an ISA I/O device and the EISA 
I/O card should not respond. 
 
If A8 and A9 are both zero during an I/O bus cycle, the bus master is address-
ing slot-specific I/O address space. In response, the AEN decoder uses A[15:12] 
to determine which one of its AEN outputs to set low. Only the card in the ex-
pansion slot to which the selected AEN line is connected can decode and re-
spond to the I/O address. Upon sensing its AEN line low, the card ensures that 
A[9:8] are zero before decoding A[11:0]. Table 9-5 defines the action taken by 
the system board's AEN decoder under each set of circumstances. 



Chapter 9: EISA System Configuration 

97 

Table 9-5. AEN Decoder Action Table 
DMAC's 

AEN 

 
A9 

 
A8 

 
M/IO# 

 
AEN Decoder Action 

1 na na na The DMAC drives its AEN output high when it is 
bus master and is placing a memory address on the 
address bus. The AEN decoder responds by driving 
all of its AEN outputs high. This prevents I/O de-
vices from decoding memory addresses. 

0 na na 1 A device other than the DMAC is bus master and 
has initiated a memory bus cycle. In response, the 
AEN decoder sets all of its AEN outputs low. The 
low on the AEN outputs allows both memory and 
I/O devices to decode addresses. 

0 0 0 0 A device other than the DMAC is bus master and 
has initiated an I/O bus cycle. Since A[9:8] are both 
zero, the bus master is addressing slot-specific I/O 
address space. In response, the AEN decoder de-
codes the high digit of the address, A[15:12], to de-
termine which of its AEN outputs to set low. All of 
the decoder's other AEN outputs are set high. Only 
the I/O device in the expansion slot addressed by 
the high digit of the address can decode the I/O 
address. 

0 0 1 0 The bus master is addressing an ISA I/O expansion 
device that resides within the 0100h – 01FFh range. 
In response, the AEN decoder sets all of its AEN 
outputs low. EISA I/O devices that use slot-specific 
I/O address space should not respond when either 
A8 or A9 are high. 

0 1 0 0 The bus master is addressing an ISA I/O expansion 
device that resides within the 0200h – 02FFh range. 
In response, the AEN decoder sets all of its AEN 
outputs low. EISA I/O devices that use slot-specific 
I/O address space should not respond when either 
A8 or A9 are high. 

0 1 1 0 The bus master is addressing an ISA I/O expansion 
device that resides within the 0300h – 03FFh range. 
In response, the AEN decoder sets all of its AEN 
outputs low. EISA I/O devices that use slot-specific 
I/O address space should not respond when either 
A8 or A9 are high. 
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Figure 9-2. The System Board's AEN Decoder 

EISA Product Identifier 

EISA expansion boards, embedded devices and system boards have a four byte 
product ID that can be read from I/O port addresses xC80h – xC83h, where x = 
0 for the system board or the number of the expansion slot the card is installed 
in. For example, the system board's ID can be read from I/O addresses 0C80 – 
0C83h and slot one’s ID can be read from 1C80 – 1C83h. 
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The first two bytes of the system board ID, read from I/O ports xC80 – xC81, 
contain a three character manufacturer's code. The three character manufac-
turer code is uppercase, ASCII alpha chosen by the manufacturer and regis-
tered with the firm that distributes the EISA spec. A compressed version of the 
ASCII code, using just the lower five bits of each character, is used. The third 
byte and the high-order four bits of the fourth byte are used to specify a prod-
uct identifier consisting of three hex digits. The lower four bits of the fourth 
byte is use to specify the product revision number. Table 9-6 illustrates the 
format of the product ID bytes read from an expansion board. Table 9-7 illus-
trates the format of the product ID bytes read from an EISA system board. 
 
To verify that an EISA expansion card is installed in a particular card slot: 
 
• Write FFh to I/O port xC80h. 
• Read one byte from xC80h. 
• If the byte read equals FFh, an EISA card isn't installed in the slot. If the 

byte does not equal FFh and bit 7 of the byte read is zero, the card's EISA 
product ID can be read from xC80h – xC83h. 

 
Table 9-6. Expansion Board Product ID Format 

Location/Bits Specify 

xC80, bit 7 not used, must be 0 
xC80, bits 6:2 1st compressed ASCII character of Manufacturer's ID 
xC80, bits 1:0 upper two bits of 2nd compressed ASCII character of Manufac-

turer's ID 
xC81, bits 7:5 lower three bits of 2nd compressed ASCII character of Manufac-

turer's ID 
xC81, bits 4:0 3rd compressed ASCII character of Manufacturer's ID 
xC82, bits 7:4 upper hex digit of product type 
xC82, bits 3:0 middle hex digit of product type 
xC83, bits 7:4 lower hex digit of product type 
xC83, bits 3:0 single hex digit of product revision number 
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Table 9-7. EISA System Board Product ID Format 
Location/Bits Specify 

0C80, bit 7 not used, must be 0 
0C80, bits 6:2 1st compressed ASCII character of Manufacturer's ID 
0C80, bits 1:0 upper two bits of 2nd compressed ASCII character of Manufac-

turer's ID 
0C81, bits 7:5 lower three bits of 2nd compressed ASCII character of Manufac-

turer's ID 
0C81, bits 4:0 3rd compressed ASCII character of Manufacturer's ID 
0C82, bits 7:0 reserved for manufacturer's use 
0C83, bits 7:3 reserved for manufacturer's use 
0C83, bits 2:0 EISA bus version 

EISA Configuration Registers 

In an ISA machine, expansion cards are configured by setting DIP switches 
and/or jumpers to the desired settings. This allows the user to select options 
such as: 
 
• the start address of a device ROM mounted on the card 
• the start address of RAM located on the card 
• the IRQ line the card utilizes 
• the DMA channel the card utilizes 
• the I/O address range the card responds to 
 
Setting the switches and/or jumpers allows the user to resolve conflicts be-
tween installed expansion cards. In addition, many ISA system boards have 
switches and/or jumpers that are used to configure the system board options. 
 
The EISA specification replaces the switches and/or jumpers with special I/O 
locations. Each of these I/O locations can contain up to eight bits that may be 
used to select options on the system or expansion card. Each I/O location may 
be thought of as a pseudo-DIP switch bank. They are configuration registers. 
These special I/O locations reside in the slot-specific I/O address space starting 
at xC80h and extending up to xCFFh, a total of 128 locations. The first four of 
these I/O locations are reserved for the card ID, while three of the eight bits in 
xC84h are reserved for special card functions. The remaining five bits in xC84h 
and locations xC85h – xCFFh are available for the implementation of card-
specific configuration registers. 

Configuration Bits Defined by EISA Spec  
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Three of the eight bits available in port xC84h must be implemented on all 
EISA expansion cards. Table 9-8 defines these three bits. 
 

Table 9-8. EISA Add-in Card Configuration Bits 
Port xC84 Description 

bit 0 ENABLE bit. 0 = disable card; 1 = enable card. This bit is 
read/writable and is mandatory. Reset clears this bit to zero. 

bit 1 IOCHKERR bit. This read-only bit is used to determine if am 
EISA card is generating CHCHK#, causing an NMI. This bit is 
mandatory if the card can generate CHCHK#. Reset clears this bit 
to zero. 

bit 2 IOCHKRST bit. This write-only bit is used to reset an expansion 
card. Setting it high for a minimum of 500ns causes the card to be 
reset. When reset, the ENABLE and IOCHKERR bits are cleared 
and all of the card’s logic is reset to an initialized state. If a card 
doesn't implement the IOCHKERR bit, the IOCHKRST bit need 
not be implemented. 

bits 7:3 available for use in configuring the card. 

EISA Configuration Process 

General 

Several elements are necessary in order to implement automatic system con-
figuration in an EISA system. The system must have some way of verifying the 
placement and type of EISA boards in the system. This is accomplished by 
reading the board ID from each card slot during the POST. 
 
Each EISA card must implement a set of one or more configuration registers to 
allow automatic configuration of the card each time the machine is powered 
on. The use of the configuration registers is card-specific and the registers are 
located in the I/O address range xC84h – xCFFh. 
 
The manufacturer of the system board and each of the EISA and, where possi-
ble, ISA boards should supply a configuration file for each card that describes 
the programmable options available on the card. Programmable options might 
include interrupt request lines and DMA channels to be used, size and start 
address of required memory space and the start address of required I/O space. 
The configuration file must identify the options within each functional area — 
for example, the choice of interrupt request lines or DMA channels the card can 
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be configured to use. For each possible choice, the file must describe the respec-
tive bit settings and I/O port to be written in order to choose the selected op-
tion. For ISA cards, the configuration file describes the available options and 
the respective DIP switch and/or jumper settings necessary to implement each 
selected option. 
 
The system manufacturer must provide a configuration program that is capable 
of examining all of the selectable options available for each of the installed 
cards and of producing a conflict-free scenario. In other words, it must be ca-
pable of choosing a set of options for each card where none of the selected op-
tions conflict with the option settings chosen for any other installed ISA or 
EISA card. The configuration program then stores the configuration informa-
tion in non-volatile memory and also makes a backup copy on diskette. The 
diskette may then be distributed within an organization to ensure that all ma-
chines are configured the same way. 
 
The EISA system board must incorporate at least 340 bytes of non-volatile 
memory for each expansion card slot and an additional 340 bytes for the sys-
tem board configuration information. The block of non-volatile memory associ-
ated with a card slot is used to store card-specific configuration information 
such as the card ID and the address of and data to be written to the card's con-
figuration registers each time the machine is powered on. 
 
The system manufacturer must supply ROM-based BIOS routines that allow 
configuration information to be written to and read from configuration mem-
ory (non-volatile memory). 

Configuration File Naming 

The name of a card's configuration file consists of an exclamation point fol-
lowed by the manusfacturer ID, product ID and the file extension of CFG. The 
following are some examples of legal configuration file names: 
 
• !DEL1233.CFG 
• !CPQ5672.CFG 
• !IBM9AB1.CFG 
 
The configuration program includes a method for handling cards with dupli-
cate product IDs. As the configuration program copies the configuration file for 
each card to the configuration diskette, it checks for duplicate product IDs. 
When one is found, the first character of the filename is changed from an ex-
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clamation point to the number one. If a third configuration file with the same 
product ID is found, its name is altered by changing the first character from an 
exclamation point to the number two, and so on. As an example, assume that 
the machine being configured has three boards with the same product ID. As 
the three configuration files are copied to the configuration diskette, they are 
renamed as follows: 
 
• first file name is left as !DEL1231.CFG 
• second file name is altered to 1DEL1231.CFG 
• third file name is altered to 2DEL1231.CFG 
 
The card manufacturer should always ensure that the card's configuration file 
name and product ID are changed to reflect the actual revision number of the 
card. 

Configuration Procedure 

The example sequence that follows provides a guide to the configuration of an 
EISA system. 
 
1. With the machine powered off, insert the configuration diskette in floppy 

drive A. 
2. Install all EISA expansion cards. Do not install ISA cards yet. 
3. Power on the machine. During the POST, the machine attempts to read the 

product ID from each expansion slot in order to determine which slots 
have EISA cards installed. 

4. When the POST is complete, the unit boots from the configuration diskette 
and executes the configuration program. 

5. Use the “copy configuration file” command on the configuration program's 
menu to copy each of the configuration files for the installed EISA cards 
and the yet-to-be-installed ISA cards onto the configuration diskette. Dur-
ing the copy process, the configuration program automatically detects and 
renames the configuration files for cards with duplicate product IDs. 

6. Select “automatic system configuration” from the menu. The configuration 
program automatically generates a conflict-free scenario for both the EISA 
and ISA cards. The configuration program stores the EISA card product 
IDs, I/O configuration port addresses and the data to be written to each 
configuration port in non-volatile memory. Information about the ISA 
cards is also stored in the slot-specific non-volatile memory areas reserved 
for the slots the ISA cards are to be installed in. 
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7. Using the prompts generated by the configuration program, the user sets 
the DIP switches and/or jumpers on the ISA cards to the indicated posi-
tions. 

8. Print a hardcopy of the expansion slots the ISA cards must be installed in 
and any command lines that may need to be entered into the operating sys-
tem's startup files (such as the CONFIG.SYS and AUTOEXEC.BAT files in 
an MS-DOS environment). 

9. Turn the system off and install the ISA cards in the expansion slots indi-
cated by the configuration program. Refer to the hardcopy. 

10. Remove the configuration program diskette from drive A: and power up 
the system again. The system now boots from the hard disk. 

11. Using a text editor, incorporate command lines into the operating system's 
startup files that were indicated by the configuration program. Refer to the 
hardcopy. 

12. Reboot the system so the commands in the operating system's startup files 
are executed. 

Configuration File Macro Language 

The option information contained within a configuration file is written in a 
high-order macro language developed by the EISA consortium specifically for 
this purpose. The syntax of this language is described in detail in the EISA 
specification. It would be counter-productive to duplicate the entire language 
definition within this document. The following section provides an annotated 
listing of a sample configuration file. 

Example Configuration File 

The following example configuration file demonstrates many, but not all, of the 
elements found in the typical configuration file. The text following the example 
explains each element. 
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BOARD1 

ID = "TLC0011" 
NAME = "XYZ Corp. Ethernet Board - Rev. 5" 
MFR = "XYZ Corp." 
CATEGORY = "NET" 
SLOT = EISA 
LENGTH = 330 
READID=YES 

 
IOPORT(1) = 0zC94h2 

INITVAL = 0000xxxx 
IOPORT(2) = 0zC98h3 

INITVAL = xxxxxxxxxxxxxxrr 
IOPORT(3) = 0zC9Ah4 

INITVAL = xxxxxxrr 
IOPORT(4) = 0zC9Bh5 

INITVAL = rrrrrxxx 
IOPORT(5) = 0zC85h6 

INITVAL = xxxxxxxx 
IOPORT(6) = 0zC86h7 

INITVAL = 0rrxxxxx 
IOPORT(7) = 0zC86h8 

INITVAL = 1rrxxxxx 
 
SOFTWARE(1) = "TLCDRVR.EXE - \n If using MS-
 DOS, place the following command line in 
 AUTOEXEC.BAT:\n\t\tTLCDRVR /S=n /A =n\n 
 Use the following values with the /S and 
 /A parameters:" 9 
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; Function description starts here 
GROUP = "Ethernet Network Interface"10 

TYPE = "NET,ETH"11 

FUNCTION = "Network Interface Location"12 

CHOICE = "Set Up as Node 0"13 

SUBTYPE = "LAN0" 
FREE 

INIT = SOFTWARE(1) = "/S = 1 /A = 0" 
INIT = IOPORT(5) = LOC (5-2) 0000 

CHOICE = "Set up as Node 1" 
SUBTYPE = "LAN1" 
FREE 

INIT = SOFTWARE(1) = "/S = 0 /A = 1" 
INIT = IOPORT(5) = LOC (5-2) 0001 

CHOICE = "Set Up as Node 2" 
SUBTYPE = "LAN2" 
FREE 

INIT = SOFTWARE(1) = "/S = 0 /A = 2" 
INIT = IOPORT(5) = LOC (5-2) 0010 

 . 
 . 
 . 

CHOICE = "Set Up as Node 15" 
SUBTYPE = "LAN15" 
FREE 

INIT = SOFTWARE(1) = "/S = 0 /A = 15" 
INIT = IOPORT(5) = LOC (5-2) 1111 
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FUNCTION = "DMA and Interrupt assignment"14 

CHOICE = "System Resources"15 

;DMA channel uses Type “C” bus cycle16 

LINK17 

DMA = 5|718 

SHARE = no 
SIZE = dword 
TIMING = TYPEC 
INIT = IOPORT(5) LOC (0) 0|1 

 
;interrupt is level-sensitive, shareable 
LINK 

IRQ = 2|519 

SHARE = yes 
TRIGGER = level 
INIT = IOPORT(5) LOC (1) 0|1 

COMBINE20 

MEMORY = 2K21 

ADDRESS = 0C0000h|0D0000h|0E0000h 
MEMTYPE = oth 
WRITABLE = no 
SHARE = no 
SIZE = byte 
CACHE = yes 
DECODE = 32 
INIT=IOPORT(6)LOC(3-0) 1100|1101|1110 
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;network board local RAM 
FUNCTION = "Local RAM initialization"22 

CHOICE = "64K RAM"23 

SUBTYPE = "64K" 
COMBINE 

MEMORY = "64K" 
ADDRESS= 100000h-1F0000h STEP = 64K 
WRITABLE = yes 
MEMTYPE = oth 
SIZE = dword 
CACHE = no 
INIT=IOPORT(7)LOC(4 3 2 1 0)00000-01111 

CHOICE = "128K RAM"24 

SUBTYPE = "128K" 
COMBINE 

MEMORY = "128K" 
ADDRESS = 100000h-1F0000h STEP = 64K 
WRITABLE = yes 
MEMTYPE = oth 
SIZE = dword 
CACHE = no 
INIT=IOPORT(7)LOC(4 3 2 1 0)10000-11111 

ENDGROUP25 
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;serial port section 
FUNCTION = "Serial Port"26 

TYPE = "COM,ASY"27 

CHOICE = "COM1"28 

SUBTYPE = "COM1" 
FREE 
IRQ = 4 

SHARE = yes 
TRIGGER = level 

PORT = 3F8h-3FFh 
SHARE = no 
SIZE = byte 

INIT = IOPORT(1) LOC (3-0) 0000 
INIT=IOPORT(2)LOC (15-2) 00000011111100 
INIT = IOPORT(3) LOC (7-2) 110000 
INIT = IOPORT(4) LOC (2-0) 010 

CHOICE = "COM2"29 

SUBTYPE = "COM2" 
FREE 
IRQ = 3 

SHARE = yes 
TRIGGER = level 

PORT = 2F8h-2FFh 
SHARE = no 
SIZE = byte 

INIT = IOPORT(1) LOC (3-0) 0000 
INIT = IOPORT(2)LOC (15-2) 00000011111100 
INIT = IOPORT(3) LOC (7-2) 110000 
INIT = IOPORT(4) LOC (2-0) 000 

 
CHOICE = "Serial Port Disable"30 

SUBTYPE = "Port Disable" 
DISABLE = yes 
FREE 

INIT = IOPORT(4) LOC (0) 0 
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Example File Explanation 

Each of the numbered sections that follow provides an explanation of the sec-
tion of the example configuration file with the corresponding subscripted 
number. 
 
1. Every configuration file must include the board identification block. The 

BOARD statement identifies the beginning of the block. The ID statement 
contains the product ID consisting of the three character manufacturer's 
code, the three digit board type and the one digit revision number. The 
NAME field contains text that describes the board. The MFR field contains 
the full name of the board manufacturer. The CATEGORY field contains a 
three character designator that identifies the basic board type. Table 9-9 
provides a listing of the available categories. The SLOT statement identifies 
the type of slot the board requires. If the SLOT statement is missing, the 
configuration program assumes that the board requires a 16-bit ISA slot. 
The LENGTH statement specifies the length of the board in millimeters. 
The READID statement identifies whether the board has a product ID that 
can be read from I/O ports xC80h – xC83h. 

2. The IOPORT(1) statement associates the variable name IOPORT(1) with 
I/O port address xC94h. The INITVAL statement identifies the source of 
each of the bits within the specified I/O port. In this example statement, 
the xxxx indicates that bits 3:0 are supplied by the configuration program 
based on the configuration chosen. The 0000 in bits 7:4 indicates that these 
bits are always zero. 

3. The IOPORT(2) statement associates the variable name IOPORT(2) with 
I/O port addresses xC98h and xC99h. The INITVAL statement identifies 
the source of each of the bits within the specified I/O port. In this example 
statement, the bit field is sixteen bits wide, indicating that this is a 16-bit 
I/O port. Bits 1:0 have an “rr” designation, meaning that they are read-
only bits. The x's in bits 15:2 indicate that they are supplied by the configu-
ration program based on the configuration chosen. 

4. The IOPORT(3) statement associates the variable name IOPORT(3) with 
I/O port address xC9Ah. The INITVAL statement identifies the source of 
each of the bits within the specified I/O port. In this example statement, 
the bit field is eight bits wide, indicating that this is an 8-bit I/O port. Bits 
1:0 have an “rr” designation, meaning that they are read-only bits. The x's 
in bits 7:2 indicate that they are supplied by the configuration program 
based on the configuration chosen. 

5. The IOPORT(4) statement associates the variable name IOPORT(4) with 
I/O port address xC9Bh. The INITVAL statement identifies the source of 
each of the bits within the specified I/O port. In this example statement, 



Chapter 9: EISA System Configuration 

111 

the bit field is eight bits wide, indicating that this is an 8-bit I/O port. Bits 
7:3 have an “r” designation, meaning that they are read-only bits. The x's in 
bits 2:0 indicate that they are supplied by the configuration program based 
on the configuration chosen. 

6. The IOPORT(5) statement associates the variable name IOPORT(5) with 
I/O port address xC85h. The INITVAL statement identifies the source of 
each of the bits within the specified I/O port. In this example statement, 
the bit field is eight bits wide, indicating that this is an 8-bit I/O port. The 
x's in bits 7:0 indicate that they are supplied by the configuration program 
based on the configuration chosen. 

7. The IOPORT(6) statement associates the variable name IOPORT(6) with 
I/O port address xC86h. The INITVAL statement identifies the source of 
each of the bits within the specified I/O port. In this example statement, 
the bit field is eight bits wide, indicating that this is an 8-bit I/O port. Bit 
seven is always zero. Bits 6:5 have an “r” designation, meaning that they 
are read-only bits. The x's in bits 4:0 indicate that they are supplied by the 
configuration program based on the configuration chosen. 

8. The IOPORT(7) statement associates the variable name IOPORT(7) with 
I/O port address xC86h. The INITVAL statement identifies the source of 
each of the bits within the specified I/O port. In this example statement, 
the bit field is eight bits wide, indicating that this is an 8-bit I/O port. Bit 
seven is always one. Bits 6:5 have an “r” designation, meaning that they are 
read-only bits. The x's in bits 4:0 indicate that they are supplied by the con-
figuration program based on the configuration chosen. 

9. The SOFTWARE(1) statement provides the end user with instructions re-
garding a customized command line to be written into operating system 
startup files like AUTOEXEC.BAT and/or CONFIG.SYS. Customization of 
the command line is based on selections made during the configuration 
process. The text located within the quotes will be displayed for the end 
user and may be printed out as well. The “\n” will cause the configuration 
program to output a “new line” to the screen, while the “\t” represents a 
tab.  

10. The GROUP statement block begins with the GROUP statement and ends 
with the ENDGROUP statement. The option choices for board functions 
that may be logically grouped are placed within the GROUP block. In this 
example, the network card being described contains both a network inter-
face and a serial port. All of the card's functions related to the network in-
terface are grouped together. 

11. The TYPE and SUBTYPE identifiers are used by device drivers to identify, 
set up and operate a device that is compatible with the device driver. In the 
example, NET indicates it is a network interface and ETH indicates that it is 
an Ethernet network interface. 
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12. The FUNCTION statement provides the name of the functional area to be 
configured. In this example, it is the location of the network interface on 
the network. 

13. The statements within a CHOICE block define the option settings for a 
given choice. The first CHOICE block specifies the most desired choice, 
with subsequent choices in order to preference. In the example, the first 
CHOICE block defines the settings if the network interface board is to be 
configured as node 0 on the network. If this choice is made, the SUBTYPE 
field is set to “LAN0” to supply additional information to the card's soft-
ware driver. The elements with a free-form group, defined by the FREE 
statement, have no functional relationship to each other. The first INIT 
statement declares that the text string “/S = 1 /A = 0” will be appended to 
the text in the SOFTWARE(1) variable if the first choice is selected. In addi-
tion, the second INIT statement declares that bits 5:2 of the I/O port speci-
fied in the variable IOPORT(5), port xC85h, must be set to zero to configure 
the network interface card as node 0 on the network. 

14. The next functional area to be configured is the assignment of the interrupt 
request line, DMA channel and the start address of the card's device ROM. 

15. There is only one CHOICE block within this functional area.  
16. This is a comment line. 
17. The elements of a LINK group have a direct relationship to each other. The 

first LINK block contains statement relating to the DMA channel selection 
and programming. The second LINK block contains statements relating to 
the selection and programming of an interrupt request line. 

18. The DMA statement offers a choice of DMA channel five or seven. The ver-
tical line between the two numbers is the logical “or” symbol. The SHARE 
statement declares the DMA channel as not shareable. The SIZE statement 
declares the DMA channel as handling doubleword, or 32-bit, transfers. 
The TIMING statement declares that the selected DMA channel must be 
programmed to use Type “C” bus cycles. The INIT statement declares that 
bit zero of IOPORT(5), port xC85h, must be set to zero to select DMA chan-
nel five or to one to select DMA channel seven. 

19. The second LINK block contains statements relating to the selection and 
programming of an interrupt request line. It allows a choice of IRQ two or 
five, the selected IRQ input must be programmed as a shareable, level-
sensitive interrupt request line, and IOPORT(5), port xC85h, bit one must 
be set to zero to select IRQ2, or to one to select IRQ5. 

20. The elements of a combined group have an indirect relationship to each 
other. 

21. The MEMORY statement identifies the start of a memory description block. 
This block describes a block of memory 2K in size. The ADDRESS state-
ment provides a choice of one of three possible start addresses for the 
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memory block. The three possible start addresses are 0C0000h, 0D0000h, or 
0E0000h. The MEMTYPE field identifies whether the memory block is 
normal system memory (SYS), expanded memory (EXP), a LIM page frame 
(VIR), or memory space used for memory-mapped I/O or bank-switched 
memory (OTH for other). OTH is primarily intended for memory-mapped 
I/O devices such as network cards. This memory block is declared not wri-
table (WRITABLE = no), meaning it is ROM memory. The memory block 
may not be shared with another device (SHARE = no). It is 8-bit memory 
(SIZE = byte). It is safe to cache information from this area of memory 
(CACHE = yes). All 32 address lines are decoded by the board (DECODE = 
32). To implement the selected memory start address, IOPORT(6), port 
xC86h, bits 3:0, must be set to Ch (1100), Dh (1101), or Eh(1110). 

22. The next functional area to be configured is the RAM memory residing on 
the network interface card. 

23. The first CHOICE block defines the configuration if the network interface 
card has 64K of RAM memory installed. Its SUBTYPE is declared as 64K 
for the use of the network interface driver. If this choice is made, the 
MEMORY block statement declares the memory as 64K in size. Its start ad-
dress may begin on any one of sixteen possible address boundaries within 
the 1M range between 100000h and 1FFFFFh and the must start at an ad-
dress divisible by 64K. It is declared as writable, meaning it is RAM mem-
ory that can be both written to and read from. It is declared with a 
MEMTYPE of OTH. It is a 32-bit device and the selected memory address 
range is declared as non-cacheable. If this choice is made, IOPORT(7), port 
xC86h, bits 4:0 must be set to a value between 0 0000 and 0 1111, depend-
ing on the start address selected. 

24. The statements within the second CHOICE block will be executed if the 
network interface card has 128K of RAM memory installed. The setup is 
the same as that with 64K of RAM installed except for the SUBTYPE decla-
ration and the value to be written to IOPORT(7), port xC86h.  If this choice 
is made, IOPORT(7), port xC86h, bits 4:0 must be set to a value between 1 
0000 and 1 1111, depending on the start address selected. 

25. The ENDGROUP statement marks the end of the network interface portion 
of the configuration information. The remaining configuration information 
relates to the serial port. 

26. The next functional area to be configured is the serial port logic residing on 
the network interface card. 

27. For the benefit of the device driver software, the SUBTYPE is declared as 
“COM,ASY” meaning asynchronous communications port. 

28. There are three possible configuration choices for the serial port: COM1, 
COM2, or disabled. For the COM1 choice, the following selections are 
made: the serial port will use IRQ4 and it will be programmed as a share-
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able, level-triggered IRQ input; it will respond to port addresses 03F8h – 
03FFh; and its I/O ports may not be shared by another device and they are 
8-bit ports. Bits 3:0 of IOPORT(1), port xC94h, will be set to zeros. Bits 1:0 
and 15:8 of IOPORT(2), ports xC98h and xC99h, will be set to zeros, while 
bits 7:2 will be set to ones. Bits 5:2 of IOPORT(3), port xC9Ah, will be set to 
zeros, while bits 7:6 will be set to ones. Bits 0 and 2 of IOPORT(4), port 
xC9Bh, will be set to zero, while bit 1 is set to one. 

29. For the COM2 choice, the selections made are the same as COM1, except: 
the serial port will use IRQ3; and it will respond to port addresses 02F8h – 
02FFh. Bits 2:0 of IOPORT(4), port xC9Bh, will be set to zero. 

30. If the serial port is to be disabled, bit 0 of IOPORT(4), port xC9Bh, is set to 
zero and the SUBTYPE is set to disabled for the driver. 

 
Table 9-9. Category List 

Category Name Description 

COM communications device 
KEY keyboard 

MEM memory board 
MFC multifunction board 
MSD mass storage device 
NET network board 
NPX numeric coprocessor 
OSE operating system environment 
OTH other 
PAR parallel port 
PTR pointing device 
SYS system board 
VID video board 
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Chapter 10 
The Previous Chapter 

In the previous chapter, automatic system configuration was described. 

This Chapter 

This chapter describes the major buses found in virtually all EISA systems. This 
includes the host, EISA, ISA and X-buses. 

The Next Chapter 

The next chapter, “Bridge, Translator, Pathfinder, Toolbox,” describes the ma-
jor functions provided by the EISA chipset. 
 

Introduction 

Refer to figure 10-1. EISA systems may incorporate a number of buses such as: 
 
• Host bus 
• EISA bus 
• X-bus 
• Local bus 
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Figure 10-1. Buses Typically Found in EISA Systems 
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to as the host CPU. The host CPU's local address, data and control buses com-
prise the host bus. Typically, devices that the CPU requires fast access to would 
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• advanced video controller 
• other I/O devices requiring fast access to the CPU 
 
If the host CPU resides on a daughter card, the CPU's local cache controller, 
cache memory, NCA logic and numeric coprocessor also typically reside on the 
CPU card. 

EISA/ISA Bus 

Since the ISA bus is a subset of the EISA bus, any reference to the EISA bus in 
this book is a reference to the ISA bus and its EISA extensions. The ISA bus is 
discussed in detail in the MindShare book entitled ISA System Architecture. The 
EISA extensions to the ISA bus are described earlier in this book. 

X-Bus 

The ability of the microprocessor to drive data onto the data bus and the ad-
dress onto the address bus is limited by the power of its output drivers. When 
the microprocessor is writing data to any external memory or I/O device, the 
data is driven out onto the processor's local data bus. If the local data bus is 
fanned out and connected to too many external devices, the drive capability of 
the microprocessor's output drivers may be exceeded and the data driven onto 
the data bus becomes corrupted. The local data bus is connected to the external 
data bus transceivers pictured in figure 10-2.  
 
During a write operation, the bus control logic allows the appropriate data bus 
transceiver to pass data from the processor's local data bus onto the system 
data (SD) bus. The output drive capability of the transceiver is substantially 
greater than that of the processor's internal drivers, allowing the SD bus to fan 
out to more places. The SD bus is connected to all of the ISA expansion slots. In 
addition, many devices that may be written to are physically located on the 
system board itself. However, it would exceed the output drive capability of 
the data bus transceivers to fan out the SD bus to all of the devices integrated 
onto the system board as well as to all of the expansion slots. 
 
To solve this problem, the SD bus is passed through another transceiver onto 
the XD, or extended data, bus. The X data bus transceiver redrives the data 
onto the XD bus during writes, permitting the data to be fanned out the devices 
residing on the XD bus. The devices integrated onto the system board are con-
nected to the X data bus. 



EISA System Architecture 

120 

 
Figure 10-2. The X-Bus 
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When a write is in progress, the bus control logic sets up the data bus trans-
ceivers to pass data from the microprocessor's local data bus onto the SD bus 
and also enables the X data bus transceiver to pass data from the SD bus to the 
XD bus. When a read is in progress, the bus control logic sets up the X data bus 
transceiver to pass data from the XD to the SD bus and sets up the data bus 
transceivers to pass data from the SD to the microprocessor's local data bus. It 
should be noted that the XD bus is just a buffered version of the ISA bus's SD 
bus.  
 
The same fanout problem exists on the processor's address bus. The address 
generated by the microprocessor is driven onto the processor's local address 
bus. In an ISA machine, it then passes through the LA bus buffer, the address 
latch and the bus control logic onto the ISA address bus. The ISA address bus 
consists of LA[23:17], SA[19:0] and SBHE#. The redrive capability of the LA bus 
buffer, the address latch and the bus control logic permits the address informa-
tion to be fanned out to all of the ISA expansion slots. In addition to the ISA 
devices installed in expansion slots, however, the address information must 
also be fanned out to the addressable devices that are integrated onto the sys-
tem board. This would exceed the drive capability of the LA bus buffer, the 
address latch and the bus control logic. To allow additional fanout, the ISA ad-
dress information is passed through a buffer onto the XA bus. The buffer's re-
drive capability permits the XA address to be fanned out to all the devices 
integrated onto the system board. In other words, the devices integrated onto 
the system board are connected to the XA and XD buses, a buffered version of 
the ISA address bus. 



EISA System Architecture 

122 

 



Chapter 11: Bridge, Translator, Pathfinder, Toolbox 

 
123 

Chapter 11 
The Previous Chapter 

The previous chapter introduced the buses around which all EISA systems are 
constructed. They are the host, EISA, ISA and X buses. 

This Chapter 

This chapter provides a description of the major functions performed by the 
EISA chipset. It acts as the bridge between the host and EISA buses. It trans-
lates addresses and other bus cycle information into a form understood by all 
of the host, EISA, ISA and X-bus devices in a system. When necessary, it per-
forms data bus steering to ensure data travels over the correct paths between 
the current bus master and the currently-addressed device. It incorporates a 
toolbox including all of the standard support logic necessary in any EISA ma-
chine. It should be noted that the ISA bus is a subset of the EISA bus. For this 
reason, all references to the EISA bus in this or any other MindShare book refer 
to both the ISA bus and the Extended ISA bus (EISA). 

The Next Chapter 

The next chapter, “Intel 82350DT EISA Chipset,” provides an introduction to 
Intel's EISA chipset. 

Bus Cycle Initiation 

When a device requires the use of the bus to communicate with another device 
in the system, it requests the use of the bus from the CAC. Upon being granted 
ownership of the bus, the bus master initiates the bus cycle by addressing the 
target device, or slave.  
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Bridge 

Upon sensing the start of the bus cycle, the EISA chipset must aid in the com-
munication process. Acting as a bridge, the EISA chipset must allow the ad-
dress generated by the bus master to propagate onto all of the system buses so 
all of the devices in the system have an opportunity to determine if they are 
currently being addressed. In this section, this function is referred to as bridg-
ing. This term isn't part of the EISA specification, but is employed here to rein-
force the visual image of the process being described. Table 11-1 defines the 
circumstances under which the EISA chipset must act as a bridge. Figure 11-1 
illustrates the relationship of the bridge to the three buses. At the start of a bus 
cycle, neither the current bus master nor the EISA chipset knows which bus the 
target slave is located on. For this reason, the EISA chipset always propagates 
addresses generated by the host CPU onto the EISA and X-buses. Conversely, it 
always propagates addresses by an EISA or ISA bus master onto the host and 
X-buses. 
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Table 11-1. Situations Requiring Address Bridging 
Bus Master Type Slave Type Action Required 

Host CPU host slave No bridging required. 
Host CPU EISA slave Address must be passed from the host 

bus to the EISA bus. 
Host CPU ISA expansion 

slave 
Address must be passed from the host 
bus onto the ISA bus. 

Host CPU ISA X-bus slave Address must be passed from the host 
bus onto the ISA bus and then onto the X-
bus. 

EISA Bus Master host slave Address must be passed from the EISA 
bus to the host bus. 

EISA Bus Master EISA slave No bridging required. 
EISA Bus Master ISA expansion 

slave 
No bridging required. 

EISA Bus Master ISA X-bus slave Address must be passed from the EISA 
bus to the X-bus. 

ISA Bus Master host slave Address must be passed from the ISA bus 
to the host bus. 

ISA Bus Master EISA slave No bridging required. 
ISA Bus Master ISA expansion 

slave 
No bridging required. 

ISA Bus Master ISA X-bus slave Address must be passed from the ISA bus 
to the X-bus. 
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Figure 11-1. The Bridge 
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Table 11-2. Situations Requiring Data Bridging 
Bus Master 

Type 
 

Slave Type 
 

Action Required 

Host CPU host slave No bridging required. 
Host CPU EISA slave On a read, data must be passed from the EISA data 

bus to the host data bus. On a write, data must be 
passed from the host data bus to the EISA data bus. 

Host CPU ISA expansion 
slave 

On a read, data must be passed from the ISA data 
bus to the host data bus. On a write, data must be 
passed from the host data bus to the ISA data bus. 

Host CPU X-bus slave On a read, data must be passed from the X data bus 
to the ISA data bus and then from the ISA data bus 
to the host data bus. On a write, data must be 
passed from the host data bus to the ISA data bus 
and then to the X data bus. 

EISA Bus 
Master 

host slave On a read, data must be passed from the host data 
bus onto the EISA data bus. On a write, data must 
be passed from the EISA data bus to the host data 
bus. 

EISA Bus 
Master 

EISA slave No bridging required. 

EISA Bus 
Master 

ISA expansion 
slave 

No bridging required. 

EISA Bus 
Master 

X-bus slave On a read, data must be passed from the X data bus 
to the EISA data bus. On a write, data must be 
passed from the EISA data bus to the X data bus. 

ISA Bus 
Master 

host slave On a read, data must be passed from the host data 
bus to the ISA data bus. On a write, data must be 
passed from the ISA data bus to the host data bus. 

ISA Bus 
Master 

EISA slave No bridging required. 

ISA Bus 
Master 

ISA expansion 
slave 

No bridging required. 

ISA Bus 
Master 

X-bus slave On a read, data must be passed from the X data bus 
to the ISA data bus. On a write, data must be passed 
from the ISA data bus to the X data bus. 
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Translator 

Address Translation 

The EISA chipset must translate the address being generated by the bus master 
to forms that are understood by the slave devices on all three buses. Table 11-3 
defines the different forms of address information expected by devices on the 
three buses. 
 

Table 11-3. Address Translation Table 
Bus Master Slave Type and Address Expected 

 
Type 

 
Address 

8-bit 
ISA 

 16-bit 
ISA 

 16-bit 
EISA 

 32-bit 
EISA 

 32-bit 
Host 

Host 
CPU 

A[31:2] and 
BE#[3:0] 

SA[19:0
] 

SA[23:0] and 
SBHE# 

LA[31:2] 
and BE#[3:0]  

LA[31:2] 
and BE#[3:0] 

A[31:2] and 
BE#[3:0] 

16-bit 
EISA 
Bus 
Master 

LA[31:2] and 
BE#[3:0] 

SA[19:0
] 

SA[23:0] and 
SBHE# 

LA[31:2] 
and BE#[3:0]  

LA[31:2] 
and BE#[3:0] 

A[31:2] and 
BE#[3:0] 

32-bit 
EISA 
Bus 
Master 

LA[31:2] and 
BE#[3:0] 

SA[19:0
] 

SA[23:0] and 
SBHE# 

LA[31:2] 
and BE#[3:0]  

LA[31:2] 
and BE#[3:0] 

A[31:2] and 
BE#[3:0] 

16-bit 
ISA 
Bus 
Master 

SA[23:0] and 
SBHE# 

SA[19:0
] 

SA[23:0] and 
SBHE# 

LA[31:2] 
and BE#[3:0]  

LA[31:2] 
and BE#[3:0] 

A[31:2] and 
BE#[3:0] 

 
When an EISA bus master or the host CPU is performing a bus cycle, the EISA 
chipset must convert the bus master's byte enable outputs, BE#[3:0], into the 
correct setting on the A0, A1 and BHE# signal lines. Conversely, when an ISA 
bus master is performing a bus cycle, A0, A1 and BHE# must be converted to 
the correct setting on the byte enable lines. 

Command Line Translation 

Each of the three types of bus masters, EISA, ISA and host CPU, uses a specific 
set of signal lines to indicate the address phase and data phase periods and the 
type of bus cycle in progress. Conversely, each of the three types of slaves rec-
ognizes the same respective set of signals indicating address phase, data phase 
and the bus cycle type. When a bus master initiates a bus cycle, the EISA chip-
set must convert the bus master's signal set to those recognized by the other 
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two slave types. This enables any bus master type to communicate with devices 
of any other type. Table 11-4 indicates the signal lines used by each of the three 
bus master and slave types to indicate address phase, data phase and the bus 
cycle type. 
 

Table 11-4. Command Lines 
 

Device 
Type 

Address 
Phase 
Signal 

 
 

Data Phase Signal 

 
 

Bus Cycle Type Indicators 

EISA START# CMD# M/IO# and W/R# 
ISA BALE SMRDC#, SMWTC#, 

MRDC#, MWTC#, IORC#, 
IOWC# 

SMRDC#, SMWTC#, MRDC#, 
MWTC#, IORC#, IOWC# 

Host ADS# End of ADS# until 
READY# sampled active 

W/R#, M/IO# and D/C# 

Pathfinder 

Under some circumstances, data path steering is necessary. When a bus master 
is communicating with a slave using a data path or paths that the slave is inca-
pable of using, the data bus steering logic must be activated. During a read bus 
cycle, the data bus steering logic ensures that the returning data arrives at the 
bus master on the expected data path(s). During a write bus cycle, the data bus 
steering logic ensures that the data being written by the bus master is routed to 
the data path(s) that the slave expects to receive the data on. In an EISA ma-
chine, the data bus steering function is provided by the EISA chipset. Table 11-
5 defines the situations when data bus steering is necessary. A more detailed 
description of data bus steering may be found in the MindShare book entitled 
ISA System Architecture. The 32-bit bus master or a 16-bit EISA bus master indi-
cates the data path(s) to be used during a bus cycle using its byte enable out-
puts, BE#[3:0]. A 16-bit ISA bus master uses A0 and BHE# to indicate the data 
path(s) that will be used during a bus cycle. The addressed slave indicates the 
data path(s) that it is connected to by asserting IO16#, M16#, EX16# or EX32#. If 
IO16#, M16# or EX16# is asserted by the currently-addressed slave, it is a 16-bit 
device and is connected to data paths 0 and 1. If the currently-addressed slave 
asserts EX32#, it is a 32-bit device and is connected to all four data paths. If 
none of these lines are asserted, the addressed slave is an 8-bit device and is 
connected only to path 0. 
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Table 11-5. Situations Requiring Data Bus Steering 
Bus 

Master 
Type 

 
Slave 
Type 

Bus 
Cycle 
Type 

 
 

Steering Action Required 

32-bit  8-bit write When a 32-bit bus master is writing a single byte to an 8-
bit device over paths 1, 2, or 3, the data bus steering 
logic must copy the byte down to path 0 so it can get to 
the 8-bit device. When a 32-bit bus master is writing 
multiple bytes to an 8-bit device in a single bus cycle, 
the data bus steering logic must route the data to path 0 
one byte at a time. As each byte is routed to the lower 
data path, the address seen by the 8-bit device must be 
incremented by the steering logic and the MWTC# or 
IOWC# line must be turned off and then on again to 
trick the 8-bit device into thinking another bus cycle has 
been initiated. 

32-bit  8-bit read When a 32-bit bus master is reading a single byte from 
an 8-bit device over path 1, 2, or 3, the data bus steering 
logic must copy the byte from path 0 to the path the bus 
master expects to receive the byte on. When a 32-bit bus 
master is attempting to read multiple bytes from an 8-bit 
device in a single bus cycle, the 8-bit device can only 
return one byte at a time. The steering logic must ad-
dress each byte individually, copy it to the proper data 
path and latch it in a latching data bus transceivers until 
all of the requested bytes have been retrieved. As each 
byte is routed to and latched by the proper data bus 
transceiver, the address seen by the 8-bit device must be 
incremented by the steering logic and the MRDC# or 
IORC# line must be turned off and then on again to trick 
the 8-bit device into thinking another bus cycle has been 
initiated. 

32-bit 16-bit write When a 32-bit bus master is writing one or two bytes to 
a 16-bit device over paths 2 or 3, the data bus steering 
logic must copy the byte or bytes to path 0 and/or path 
1 so that they can get to the 16-bit device. 
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Bus 
Master 
Type 

 
Slave 
Type 

Bus 
Cycle 
Type 

 
 

Steering Action Required 

32-bit 16-bit read When a 32-bit bus master is reading one or two bytes 
from a 16-bit device over paths 2 or 3, the data bus steer-
ing logic must copy the byte or bytes from path 0 
and/or path 1 to path 2 and/or path 3 so that they are 
received by the bus master over the expected data 
path(s). 

32-bit 32-bit read 
or 
write 

none 

16-bit 8-bit write When a 16-bit bus master is writing a single byte to an 8-
bit device over path 1, the data bus steering logic must 
copy the byte down to path 0 so that it can get to the 8-
bit device. When a 16-bit bus master is writing two bytes 
to an 8-bit device in a single bus cycle, the data bus 
steering logic must route the data to path 0 one byte at a 
time. As each byte is routed to the lower data path, the 
address seen by the 8-bit device must be incremented by 
the steering logic and the MWTC# or IOWC# line must 
be turned off and then on again to trick the 8-bit device 
into thinking another bus cycle has been initiated. 

16-bit 16-bit read 
or 
write 

none 

16-bit 32-bit write When a 16-bit bus master is writing one or two bytes to 
either of the last two locations in a doubleword in a sin-
gle bus cycle, the steering logic must copy the byte or 
bytes to path 2 and/or path 3 so that the data will be 
routed to the proper location(s) within the addressed 
doubleword. 

16-bit 32-bit read When a 16-bit bus master is reading one or two bytes 
from either of the last two locations in a doubleword in 
a single bus cycle, the steering logic must route the byte 
or bytes from path 2 and/or path 3 to path 0 and/or 
path 1 so that the data will be received over the proper 
path(s). 

Table 11 - 5 cont. 
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Toolbox 

In addition to providing the bridge, translation and data bus steering functions, 
the EISA chipset includes a toolbox with all of the basic support elements nec-
essary for the proper function of any EISA system. These include: 
 
• Two modified Intel 8259A programmable interrupt controllers in a mas-

ter/slave configuration 
• Two modified Intel 8237 DMA controllers in a master/slave configuration 
• The refresh logic 
• The central arbitration control 
• Five programmable timers 
• The NMI logic 
 
Detailed descriptions of interrupts, DMA, refresh, the timers and the NMI logic 
can be found in the MindShare book entitled ISA System Architecture. Informa-
tion regarding the EISA-specific enhancements to the interrupt, DMA, refresh 
and the NMI control logic can be found earlier in this book. Information re-
garding the Central Arbitration Control (CAC) can be found earlier in this pub-
lication. A description of the Intel 82357 Integrated Systems Peripheral (ISP) 
can be found in the next chapter. The ISP, part of the Intel EISA chipset, con-
tains all of the above-mentioned logic elements. 
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Chapter 12 
The Previous Chapter 

The previous chapter described the major functions performed by an EISA 
chipset. 

This Chapter 

This chapter provides an introduction to the Intel 82350DT EISA chipset. The 
focus is on the 82358DT EISA Bus Controller (EBC), the 82357 Integrated Sys-
tems Peripheral (ISP), and the 82352 EISA Bus Buffers (EBBs). 

Introduction 

This chapter is not intended as a substitute for the Intel publication that de-
scribes the 82350DT EISA chipset. It is intended as a companion to the Intel 
document, providing an introduction to the roles each component plays in a 
typical  EISA system. Only the crucial chipset components are represented 
here: the EBC, the address EBB, the data EBB and the ISP. For detailed informa-
tion, refer to the Intel document entitled “82350DT EISA Chipset,” order num-
ber 290377-002. The EBC can be configured to operate in three different types 
of environments: 
 
• With the host interface unit interfaced directly to the host CPU subsystem. 

This is referred to as the 82350 environment. 
• With the host interface unit interfaced to the host bus through the Intel 

82359 DRAM controller. This is referred to as the 82350DT/enhanced envi-
ronment. 

• With the host interface unit interfaced to a buffered bus. The buffered bus, 
in turn, is connected to the Intel 82359 DRAM controller, which is con-
nected to the host bus. This is referred to as the 82350DT/buffered envi-
ronment. 

 
This chapter describes operation of the EISA chipset configured for the 82350 
environment. 
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Figure 12-1 illustrates the relationship of the Intel EBC, ISP, Data Buffer and 
Address Buffer to the host, EISA/ISA and X-buses in the 82350 environment. 

 
Figure 12-1. The Intel EISA Chipset 

 EISA Bus Controller (EBC) and EISA Bus Buffers (EBBs) 

General 

The EBC is pictured in figure 12-2. Together with the Data and Address EBBs, 
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scribed in the previous chapter. The following sections describe each of the 
functional areas that comprise the EBC. 
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CPU Selection 

These four inputs to the EBC indicate the host CPU type and its bus frequency. 
Table 12-1 defines the valid settings for these inputs. If the host CPU is inte-
grated onto the system board, these pins should be permanently strapped to 
the appropriate state. When the host CPU resides on a plug-in card, however, 
the four CPU signals should be set to the appropriate state when the CPU card 
is inserted. This allows automatic configuration of the EBC to match the CPU 
card installed in the machine. CPU input patterns not specified in table 12-1 are 
reserved for future use. 
 

Table 12-1. CPU Type/Frequency 
CPU3 CPU2 CPU1 CPU0 CPU Type/Frequency 

1 0 1 0 32-bits, 2x clock, 25MHz 80386 
1 0 1 1 32-bits, 2x clock, 33MHz 80386 
1 1 0 0 32-bits, 1x clock, 25MHz 80486 
1 1 0 1 32-bits, 1x clock, 33MHz 80486 
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Figure 12-2. The Intel 82358DT EBC 
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Data Buffer Control and EISA Bus Buffer (EBB) 

General 

The EBC Data Buffer Control block pictured in figure 12-2 uses a group of EBC 
output signals to: 
 
• control the data transceivers when routing data between the host and EISA 

buses. 
• perform data bus steering when necessary, utilizing the latches and data 

bus transceivers. 
 
These transceivers and latches are located in the 82352 EISA Bus Buffer, or EBB, 
pictured in figure 12-3. Table 12-2 defines the EBC output signals used to con-
trol the data EBB. 
 

Table 12-2. EBC Output Signals Used to Control the Data EBB 
Signal Pin Description 

SDCPYEN01# 4 Enables the data EBB's steering transceiver between EISA 
data paths zero and one. The direction of copy is defined by 
the state of the SDCPYUP signal. If SDCPYUP is low, the byte 
on EISA data path one is copied to EISA data path zero. If 
SDCPYUP is high, the byte on EISA data path zero is copied 
to EISA data path one. 

SDCPYEN02# 5 Enables the data EBB's steering transceiver between EISA 
data paths zero and two. The direction of copy is defined by 
the state of the SDCPYUP signal. If SDCPYUP is low, the byte 
on EISA data path two is copied to EISA data path zero. If 
SDCPYUP is high, the byte on EISA data path zero is copied 
to EISA data path two. 

SDCPYEN03# 6 Enables the data EBB's steering transceiver between EISA 
data paths zero and three. The direction of copy is defined by 
the state of the SDCPYUP signal. If SDCPYUP is low, the byte 
on EISA data path three is copied to EISA data path zero. If 
SDCPYUP is high, the byte on EISA data path zero is copied 
to EISA data path three. 
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Signal Pin Description 

SDCPYEN13# 7 Enables the data EBB's steering transceiver between EISA 
data paths one and three. The direction of copy is defined by 
the state of the SDCPYUP signal. If SDCPYUP is low, the byte 
on EISA data path three is copied to EISA data path one. If 
SDCPYUP is high, the byte on EISA data path one is copied 
to EISA data path three. 

SDCPYUP 8 See SDCPYEN01# description. 
SDHDLE3# 10 When activated by the EBC, causes the data EBB to latch the 

data byte on EISA data path three. 
SDHDLE2# 11 When activated by the EBC, causes the data EBB to latch the 

data byte on EISA data path two. 
SDHDLE1# 12 When activated by the EBC, causes the data EBB to latch the 

data byte on EISA data path one. 
SDHDLE0# 13 When activated by the EBC, causes the data EBB to latch the 

data byte on EISA data path zero. 
SDOE2# 14 When activated by the EBC, causes the data EBB to drive the 

two previously latched bytes onto EISA data paths two and 
three. 

SDOE1# 16 When activated by the EBC, causes the data EBB to drive the 
previously latched byte onto EISA data path one. 

SDOE0# 17 When activated by the EBC, causes the data EBB to drive the 
previously latched byte onto EISA data path zero. 

HDSDLE1# 18 When activated by the EBC, causes the data EBB to latch four 
bytes from the host data bus. 

HDOE1# 20 When activated by the EBC, causes the data EBB to drive the 
two bytes latched into the path two and three latches onto 
paths two and three of the host data bus. 

HDOE0 22 When activated by the EBC, causes the data EBB to drive the 
two bytes latched into the path zero and one latches onto 
paths zero and one of the host data bus. 

 

Table 12 - 2, cont. 
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Figure 12-3. The Data EISA Bus Buffer, or EBB 
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word address on LA[31:2], setting M/IO# to the appropriate state, and activat-
ing all four byte enable lines, BE#[3:0]. The bus master sets the W/R# bus cycle 
definition line low to indicate a read is in progress and activates the START# 
signal to indicate that the bus cycle has begun.  
 
At the end of address time, which is one BCLK cycle in duration, the 32-bit bus 
master deactivates START#, the EBC activates CMD# and the bus master sam-
ples the EX32# line to see if a 32-bit EISA slave is responding. When the bus 
master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 8 or 16-bit 
host slave, EX32# will not be returned active. Since an 8-bit ISA slave is being 
addressed in this example, EX32# is not sampled active by the bus master. At 
the end of address time, the EBC also samples EX32#, as well as EX16#, M16# 
and IO16# to determine the size and type of slave device that is responding. 
Since none of these four signals are sampled active, the EBC determines that 
the bus master is currently addressing an 8-bit ISA slave. Upon determining 
that the addressed slave is not connected to all four data paths, the bus master 
assumes that the EBC and EBB will take care of any data bus steering that may 
be necessary to accomplish the transfer. In order to let the EBC and EBB use the 
buses for steering, the bus master disconnects from the four data paths, the 
byte enable lines and the START# signal at midpoint of data time. The bus mas-
ter continues to drive the doubleword address onto LA[31:2], however, as well 
as M/IO# and W/R#. The bus master then samples the state of the EX32# line 
at the end of each data time until it is sampled active. During this period of 
time, data bus steering is being performed by the EBC and EBB. 
 
The EBC converts the M/IO# and W/R# settings to an active level on either the 
IORC#, SMRDC# or MRDC# bus cycle definition line on the ISA portion of the 
bus. The EBC also converts the active level on the byte enable lines to zeros on 
SA0 and SA1 and a low on SBHE#. The addressed 8-bit ISA slave responds to 
the read and drives the byte from the addressed location onto the lower data 
path, SD[7:0]. The EBC monitors NOWS# and CHRDY to determine when the 
slave is ready to end the transfer and then latches the byte into the path zero 
latch in the data EBB using the EBC's SDHDLE0# output signal. The EBC deac-
tivates CMD#. 
 
Having completed the transfer of the first of the four bytes, the EBC increments 
the address by setting SA0 to a one, SA1 to a zero and SBHE# active. The EBC 
then tricks the addressed slave into thinking a new bus cycle has begun by 
generating START# again, followed by CMD#. When the EBC senses the 
changes on START# and CMD#, it turns the ISA command line off (SMRDC#, 
SMWTC#, IORC# or IOWC#) and then on again, causing the 8-bit ISA device to 
think another bus cycle has begun. The 8-bit ISA slave then drives the byte 
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from the currently addressed location onto data path zero, SD[7:0]. The EBC 
again monitors NOWS# and CHRDY to determine when the slave is ready to 
end the transfer. The EBC then copies the byte to data path one and latches it 
into the data EBB's path one data latch. This is accomplished by activating the 
EBC's SDCPYEN01# and SDCPYUP output signals to copy the byte from path 
zero to path one and then latching the byte into the path one latch in the data 
EBB using the EBC's SDHDLE1# output signal. The first two of the four re-
quested data bytes are now latched into the data EBB. 
 
The EBC again increments the address by setting SA0 to a zero, SA1 to a one 
and SBHE# active. The EBC again tricks the addressed slave into thinking a 
new bus cycle has begun by generating START#, followed by CMD#, causing 
the appropriate ISA command line to be deactivated and then activated again. 
The 8-bit ISA slave then drives the byte from the currently addressed location 
onto data path zero, SD[7:0]. The EBC again monitors NOWS# and CHRDY to 
determine when the slave is ready to end the transfer. The EBC then copies the 
byte to data path two and latches it into the data EBB's path two data latch. 
This is accomplished by activating the EBC's SDCPYEN02# and SDCPYUP 
output signals to copy the byte from path zero to path two and then latching 
the byte into the path two latch in the data EBB using the EBC's SDHDLE2# 
output signal. The first three of the four requested data bytes are now latched 
into the data EBB. 
 
The EBC again increments the address  by setting SA0 and SA1 high and 
SBHE# active. The EBC again tricks the addressed slave into thinking a new 
bus cycle has begun by generating START#, followed by CMD#, causing the 
appropriate ISA command line to be deactivated and then activated again. The 
8-bit ISA slave then drives the byte from the currently addressed location onto 
data path zero, SD[7:0]. The EBC again monitors NOWS# and CHRDY to de-
termine when the slave is ready to end the transfer. The EBC then copies the 
byte to data path three and latches it into the data EBB's path three data latch. 
This is accomplished by activating the EBC's SDCPYEN03# and SDCPYUP 
output signals to copy the byte from path zero to path three and then latching 
the byte into the path three latch in the data EBB using the EBC's SDHDLE3# 
output signal. All four of the requested data bytes are now latched into the data 
EBB. 
Using its SDOE0#, SDOE1# and SDOE2# outputs, the EBC now commands the 
data EBB to drive the four latched bytes onto the four data paths. The EBC ac-
tivates the EX32# and EX16# lines at the midpoint of the current data time to 
signal the end of data bus steering. At the trailing-edge of the current data 
time, the 32-bit EISA bus master samples EX32# active, indicating that the nec-
essary steering has been completed. The bus master can begin to drive the ad-
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dress for the next bus cycle onto the buses at the midpoint of the next data 
time. The current bus cycle completes at the end of this last data time. Since this 
is a read bus cycle, the bus master reads the four bytes from the four data paths 
when the EBC deactivates CMD#, ending the bus cycle. 
 
In the second example, the bus master is initiating a 32-bit write to an 8-bit 
ISA slave. The 32-bit bus master begins the bus cycle by placing the double-
word address on LA[31:2], setting M/IO# to the appropriate state, and activat-
ing all four byte enable lines, BE#[3:0]. The bus master sets the W/R# bus cycle 
definition line high to indicate a write is in progress and activates the START# 
signal to indicate that the bus cycle has begun. At the midpoint of address time, 
the bus master begins to drive the four bytes onto the four EISA data paths. 
 
At the end of address time, which is one BCLK cycle in duration, the following 
events occur: 
 
• The 32-bit bus master deactivates START# and the EBC activates CMD#. 
• Using its four SDHDLEx# outputs, the EBC causes the data EBB to latch the 

four data bytes being driven onto the four EISA data paths by the bus mas-
ter. 

• The bus master samples the EX32# line to see if a 32-bit EISA slave is re-
sponding. 

 
When the bus master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 
8 or 16-bit host slave, EX32# will not be returned active. Since an 8-bit ISA slave 
is being addressed in this example, EX32# is not sampled active by the bus 
master. At the end of address time, the EBC also samples EX32#, as well as 
EX16#, M16# and IO16# to determine the size and type of slave device that is 
responding. Since none of these four signals are sampled active, the EBC de-
termines that the bus master is currently addressing an 8-bit ISA slave. Upon 
determining that the addressed slave is not connected to all four data paths, the 
bus master assumes that the EBC and EBB will take care of any data bus steer-
ing that may be necessary to accomplish the transfer. In order to let the EBC 
and EBB use the buses for steering, the bus master disconnects from the four 
data paths, the byte enable lines and the START# signal at midpoint of data 
time. The bus master continues to drive the doubleword address onto LA[31:2], 
however, as well as M/IO# and W/R#. The bus master then samples the state 
of the EX32# line at the end of each data time until it is sampled active. During 
this period of time, data bus steering is being performed by the EBC and EBB. 
 
The EBC converts the M/IO# and W/R# settings to an active level on either the 
IOWC#, SMWTC# or MWTC# bus cycle definition line on the ISA portion of 



Chapter 12: Intel 82350DT EISA Chipset 

143 

the bus. The EBC also converts the active level on the byte enable lines to zeros 
on SA0 and SA1 and a low on SBHE#. Using its SDOE0# output, the EBC 
causes the data EBB to drive the byte latched in its path zero latch onto EISA 
data path zero. The addressed 8-bit ISA slave responds to the write and accepts 
the byte from the lower data path, SD[7:0]. The EBC monitors NOWS# and 
CHRDY to determine when the slave is ready to end the transfer. The EBC de-
activates CMD# and SDOE0#, causing the data EBB to cease driving the byte 
onto EISA data path zero. 
 
Having completed the transfer of the first of the four bytes, the EBC increments 
the address by setting SA0 to a one, SA1 to a zero and SBHE# active. The EBC 
then tricks the addressed slave into thinking a new bus cycle has begun by 
generating START# again, followed by CMD#. This causes the appropriate ISA 
command line to be deactivated and then activated again. Using its SDCPYUP, 
SDCPYEN01# and SDOE1# output signals, the EBC causes the data EBB to 
drive the byte latched in its path one latch onto path one and copies it down to 
EISA data path zero. The 8-bit ISA slave then accepts the byte from EISA data 
path zero, SD[7:0]. The EBC again monitors NOWS# and CHRDY to determine 
when the slave is ready to end the transfer. The first two of the four data bytes 
have been written to the target 8-bit ISA slave. The EBC deactivates CMD#, 
SDCPYEN01# and SDOE1#, causing the data EBB to cease driving the byte 
onto EISA data path one and turning off the EBB's copy transceiver. 
 
The EBC again increments the address by setting SA0 to a zero, SA1 to a one 
and SBHE# active. The EBC again tricks the addressed slave into thinking a 
new bus cycle has begun by generating START#, followed by CMD#, causing 
the appropriate ISA command line to be deactivated and then activated again. 
Using its SDCPYUP, SDCPYEN02# and SDOE2# output signals, the EBC causes 
the data EBB to drive the byte latched in its path two latch onto path two and 
copies it down to EISA data path zero. The 8-bit ISA slave then accepts the byte 
from EISA data path zero, SD[7:0]. The EBC again monitors NOWS# and 
CHRDY to determine when the slave is ready to end the transfer. The first 
three of the four data bytes have been written to the target 8-bit ISA slave. The 
EBC deactivates CMD#, SDCPYEN02# and SDOE2#, causing the data EBB to 
cease driving the byte onto EISA data path two and turning off the EBB's copy 
transceiver. 
 
The EBC again increments the address  by setting SA0 and SA1 high and 
SBHE# active. The EBC again tricks the addressed slave into thinking a new 
bus cycle has begun by generating START#, followed by CMD#, causing the 
appropriate ISA command line to be deactivated and then activated again. Us-
ing its SDCPYUP, SDCPYEN03# and SDOE2# output signals, the EBC causes 



EISA System Architecture 

144 

the data EBB to drive the byte latched in its path three latch onto path three and 
copies it down to EISA data path zero. The 8-bit ISA slave then accepts the byte 
from EISA data path zero, SD[7:0]. The EBC again monitors NOWS# and 
CHRDY to determine when the slave is ready to end the transfer. All four of 
the requested data bytes have now been written to the target 8-bit ISA slave. 
The EBC deactivates CMD#, SDCPYEN03# and SDOE2#, causing the data EBB 
to cease driving the byte onto EISA data path three and turning off the EBB's 
copy transceiver. 
 
The EBC activates the EX32# and EX16# lines at the midpoint of the current 
data time to signal the end of data bus steering. At the trailing-edge of the cur-
rent data time, the 32-bit EISA bus master samples EX32# active, indicating that 
the necessary steering has been completed. The bus master can begin to drive 
the address for the next bus cycle onto the buses at the midpoint of the next 
data time. The current bus cycle completes at the end of this last data time. 
Since this is a write bus cycle, the bus master ends the bus cycle when the EBC 
deactivates CMD#. 
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Figure 12-4. Linkage Between the EBC and the Data EBB 
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Two examples are described in the following paragraphs: a 32-bit read from 
the 16-bit ISA slave; and a 32-bit write to a 16-bit ISA slave. Refer to figure 12-4 
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ISA slave. The 32-bit bus master begins the bus cycle by placing the double-
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definition line low to indicate a read is in progress and activates the START# 
signal to indicate that the bus cycle has begun.  
 
The EBC determines that a 32-bit EISA bus master has initiated the bus cycle 
using the criteria in table 12-3. HHLDA, Host Hold Acknowledge, is inactive, 
indicating that the host CPU is not the bus master. EXMASTER# is active and 
MASTER16# is inactive, indicating that a 32-bit EISA bus master is using the 
buses. 
 

Table 12-3. EBC's Bus Master Type Determination Criteria 
 

HHLDA 

 

REFRESH# 

 

EXMASTER# 

 

MASTER16# 

 

EMSTR16# 

 

MSBURST# 

Bus Master 

Type 

0 1 1 1 1 1 32-bit host 
CPU 

1 0 1 1 x 1 Refresh 

1 1 0 1 1 1 32-bit EISA 

1 1 0 1 1 0 32-bit EISA 
burst 

1 1 0 pulse 1 0 downshift 
32-bit EISA 
burst 

1 1 0 0 1 1 16-bit EISA 

1 1 0 0 1 0 16-bit EISA 
burst 

1 1 1 0 0 1 16-bit ISA 

1 1 1 1 1 1 DMA 

1 1 1 1 1 0 DMA burst 

 
At the end of address time, which is one BCLK cycle in duration, the 32-bit bus 
master deactivates START#, the EBC activates CMD# and the bus master sam-
ples the EX32# line to see if a 32-bit EISA slave is responding. When the bus 
master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 8 or 16-bit 
host slave, EX32# will not be returned active. Since a 16-bit ISA slave is being 
addressed in this example, EX32# is not sampled active by the bus master. At 
the end of address time, the EBC also samples EX32#, as well as EX16#, M16# 
and IO16# to determine the size and type of slave device that is responding. 
Since either M16# or IO16# is sampled active, the EBC determines that the bus 
master is currently addressing a 16-bit ISA slave. Upon determining that the 
addressed slave is not connected to all four data paths, the bus master assumes 
that the EBC and EBB will take care of any data bus steering that may be neces-
sary to accomplish the transfer. In order to let the EBC and EBB use the buses 
for steering, the bus master disconnects from the four data paths, the byte en-
able lines and the START# signal at midpoint of data time. The bus master con-
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tinues to drive the doubleword address onto LA[31:2], however, as well as 
M/IO# and W/R#. The bus master then samples the state of the EX32# line at 
the end of each data time until it is sampled active. During this period of time, 
data bus steering is being performed by the EBC and EBB. 
The EBC converts the M/IO# and W/R# settings to an active level on either the 
IORC#, SMRDC# or MRDC# bus cycle definition line on the ISA portion of the 
bus. The EBC also converts the active level on the byte enable lines to zeros on 
SA0 and SA1 and a low on SBHE#. The low on SA0 and SBHE# indicates to the 
addressed 16-bit ISA slave that a 16-bit transfer is in progress. The addressed 
16-bit ISA slave responds to the read and drives the byte from the even-
addressed location onto the EISA data path zero, SD[7:0], and the byte from the 
odd-addressed location onto EISA data path one, SD[15:8]. The EBC monitors 
NOWS# and CHRDY to determine when the slave is ready to end the transfer 
and then latches the two bytes into the path zero and path one latches in the 
data EBB using the EBC's SDHDLE0# and SDHDLE1# output signals. The EBC 
deactivates CMD#. 
 
Having completed the transfer of the first two of the four bytes, the EBC incre-
ments the address by setting SA0 to a zero, SA1 to a one and SBHE# active. The 
EBC then tricks the addressed slave into thinking a new bus cycle has begun by 
generating START# again, followed by CMD#, causing the appropriate ISA 
command line to be deactivated and then activated again. The 16-bit ISA slave 
then drives the byte from the even-addressed location onto EISA data path 
zero, SD[7:0], and the byte from the odd-addressed location onto EISA data 
path one. The EBC again monitors NOWS# and CHRDY to determine when the 
slave is ready to end the transfer. The EBC then copies the two bytes on paths 
zero and one to data paths two and three and latches them into the data EBB's 
path two and three data latches. This is accomplished by activating the EBC's 
SDCPYEN02#, SDCPYEN13# and SDCPYUP output signals to copy the byte 
from path zero to path two, the byte from path  one to path three, and then 
latching the bytes into the path two and three latches in the data EBB using the 
EBC's SDHDLE2# and SDHDLE3# output signals. All four of the requested 
data bytes are now latched into the data EBB. 
 
Using its SDOE0#, SDOE1# and SDOE2# outputs, the EBC now commands the 
data EBB to drive the four latched bytes onto the four data paths. The EBC ac-
tivates the EX32# and EX16# lines at the midpoint of the current data time to 
signal the end of data bus steering. At the trailing-edge of the current data 
time, the 32-bit EISA bus master samples EX32# active, indicating that the nec-
essary steering has been completed. The bus master can begin to drive the ad-
dress for the next bus cycle onto the buses at the midpoint of the next data 
time. The current bus cycle completes at the end of this last data time. Since this 



EISA System Architecture 

148 

is a read bus cycle, the bus master reads the four bytes from the four data paths 
when the EBC deactivates CMD#, ending the bus cycle. 
 
In the second example, the bus master is initiating a 32-bit write to a 16-bit 
ISA slave. The 32-bit bus master begins the bus cycle by placing the double-
word address on LA[31:2], setting M/IO# to the appropriate state, and activat-
ing all four byte enable lines, BE#[3:0]. The bus master sets the W/R# bus cycle 
definition line high to indicate a write is in progress and activates the START# 
signal to indicate that the bus cycle has begun. At the midpoint of address time, 
the bus master begins to drive the four bytes onto the four EISA data paths. 
 
At the end of address time, which is one BCLK cycle in duration, the following 
events occur: 
 
• The 32-bit bus master deactivates START# and the EBC activates CMD#. 
• Using its four SDHDLEx# outputs, the EBC causes the data EBB to latch the 

four data bytes being driven onto the four EISA data paths by the bus mas-
ter. 

• The bus master samples the EX32# line to see if a 32-bit EISA slave is re-
sponding. 

 
When the bus master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 
8 or 16-bit host slave, EX32# will not be returned active. Since a 16-bit ISA slave 
is being addressed in this example, EX32# is not sampled active by the bus 
master. At the end of address time, the EBC also samples EX32#, as well as 
EX16#, M16# and IO16# to determine the size and type of slave device that is 
responding. Since either M16# or IO16# is sampled active, the EBC determines 
that the bus master is currently addressing a 16-bit ISA slave. Upon determin-
ing that the addressed slave is not connected to all four data paths, the bus 
master assumes that the EBC and EBB will take care of any data bus steering 
that may be necessary to accomplish the transfer. In order to let the EBC and 
EBB use the buses for steering, the bus master disconnects from the four data 
paths, the byte enable lines and the START# signal at midpoint of data time. 
The bus master continues to drive the doubleword address onto LA[31:2], 
however, as well as M/IO# and W/R#. The bus master then samples the state 
of the EX32# line at the end of each data time until it is sampled active. During 
this period of time, data bus steering is being performed by the EBC and EBB. 
The EBC converts the M/IO# and W/R# settings to an active level on either the 
IOWC#, SMWTC# or MWTC# bus cycle definition line on the ISA portion of 
the bus. The EBC also converts the active level on the byte enable lines to zeros 
on SA0 and SA1 and a low on SBHE#. Using its SDOE0# and SDOE1# outputs, 
the EBC causes the data EBB to drive the bytes latched in its path zero and one 
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latches onto EISA data paths zero and one. The addressed 16-bit ISA slave re-
sponds to the write and accepts the two bytes from the EISA data paths zero 
and one, SD[7:0] and SD[15:8]. The EBC monitors NOWS# and CHRDY to de-
termine when the slave is ready to end the transfer. The EBC deactivates 
CMD#, SDOE0# and SDOE1#, causing the data EBB to cease driving the two 
bytes onto EISA data paths zero and one. 
 
The EBC increments the address by setting SA0 to a zero, SA1 to a one and 
SBHE# active. The EBC tricks the addressed slave into thinking a new bus cycle 
has begun by generating START#, followed by CMD#, causing the appropriate 
ISA command line to be deactivated and then activated again. Using its 
SDCPYUP, SDCPYEN02#, SDCPYEN13# and SDOE2# output signals, the EBC 
causes the data EBB to drive the two bytes latched in its path two and three 
latches onto paths two and three and copies them down to EISA data paths 
zero and one. The 16-bit ISA slave then accepts the two bytes from EISA data 
paths zero and one, SD[7:0] and SD[15:8]. The EBC again monitors NOWS# and 
CHRDY to determine when the slave is ready to end the transfer. All four of 
the four data bytes have been written to the target 16-bit ISA slave. The EBC 
deactivates CMD#, SDCPYEN02#, SDCPYEN13# and SDOE2#, causing the 
data EBB to cease driving the two bytes onto EISA data paths two and three 
and turning off the EBB's two copy transceivers. 
 
The EBC activates the EX32# and EX16# lines at the midpoint of the current 
data time to signal the end of data bus steering. At the trailing-edge of the cur-
rent data time, the 32-bit EISA bus master samples EX32# active, indicating that 
the necessary steering has been completed. The bus master can begin to drive 
the address for the next bus cycle onto the buses at the midpoint of the next 
data time. The current bus cycle completes at the end of this last data time. 
Since this is a write bus cycle, the bus master ends the bus cycle when the EBC 
deactivates CMD#. 
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Transfer Between 32-bit EISA Bus Master and 
16-bit EISA Slave 

Two examples are described in the following paragraphs: a 32-bit read from 
the 16-bit EISA slave; and a 32-bit write to a 16-bit EISA slave. Refer to figure 
12-4 during the discussion. 
 
In the first example, the bus master is initiating a 32-bit read from a 16-bit 
EISA slave. The 32-bit bus master begins the bus cycle by placing the double-
word address on LA[31:2], setting M/IO# to the appropriate state, and activat-
ing all four byte enable lines, BE#[3:0]. The bus master sets the W/R# bus cycle 
definition line low to indicate a read is in progress and activates the START# 
signal to indicate that the bus cycle has begun.  
 
At the end of address time, which is one BCLK cycle in duration, the 32-bit bus 
master deactivates START#, the EBC activates CMD# and the bus master sam-
ples the EX32# line to see if a 32-bit EISA slave is responding. When the bus 
master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 8 or 16-bit 
host slave, EX32# will not be returned active. Since a 16-bit EISA slave is being 
addressed in this example, EX32# is not sampled active by the bus master. At 
the end of address time, the EBC also samples EX32#, as well as EX16#, M16# 
and IO16# to determine the size and type of slave device that is responding. 
Since EX16# is sampled active, the EBC determines that the bus master is cur-
rently addressing a 16-bit EISA slave. Upon determining that the addressed 
slave is not connected to all four data paths, the bus master assumes that the 
EBC and EBB will take care of any data bus steering that may be necessary to 
accomplish the transfer. In order to let the EBC and EBB use the buses for steer-
ing, the bus master disconnects from the four data paths, the byte enable lines 
and the START# signal at midpoint of data time. The bus master continues to 
drive the doubleword address onto LA[31:2], however, as well as M/IO# and 
W/R#. The bus master then samples the state of the EX32# line at the end of 
each data time until it is sampled active. During this period of time, data bus 
steering is being performed by the EBC and EBB. 
 
The active level on BE0# and BE1# indicates to the addressed 16-bit EISA slave 
that a 16-bit transfer is in progress involving the first two locations in the cur-
rently addressed doubleword. The addressed 16-bit EISA slave responds to the 
read and drives the byte from the even-addressed location onto the EISA data 
path zero, SD[7:0], and the byte from the odd-addressed location onto EISA 
data path one, SD[15:8]. The EBC monitors EXRDY to determine when the 
slave is ready to end the transfer and then latches the two bytes into the path 
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zero and path one latches in the data EBB using the EBC's SDHDLE0# and 
SDHDLE1# output signals. The EBC deactivates CMD#. 
 
The EBC now addresses the last two bytes in the addressed doubleword by ac-
tivating BE2# and BE3# and deactivating BE0# and BE1#. The EBC then tricks 
the addressed slave into thinking a new bus cycle has begun by generating 
START# again, followed by CMD#. The 16-bit EISA slave then drives the byte 
from the even-addressed location onto EISA data path zero, SD[7:0], and the 
byte from the odd-addressed location onto EISA data path one. The EBC again 
monitors EXRDY to determine when the slave is ready to end the transfer. The 
EBC then copies the two bytes on paths zero and one to data paths two and 
three and latches them into the data EBB's path two and three data latches. This 
is accomplished by activating the EBC's SDCPYEN02#, SDCPYEN13# and 
SDCPYUP output signals to copy the byte from path zero to path two, the byte 
from path  one to path three, and then latching the bytes into the path two and 
three latches in the data EBB using the EBC's SDHDLE2# and SDHDLE3# out-
put signals. All four of the requested data bytes are now latched into the data 
EBB. 
 
Using its SDOE0#, SDOE1# and SDOE2# outputs, the EBC now commands the 
data EBB to drive the four latched bytes onto the four data paths. The EBC ac-
tivates the EX32# and EX16# lines at the midpoint of the current data time to 
signal the end of data bus steering. At the trailing-edge of the current data 
time, the 32-bit EISA bus master samples EX32# active, indicating that the nec-
essary steering has been completed. The bus master can begin to drive the ad-
dress for the next bus cycle onto the buses at the midpoint of the next data 
time. The current bus cycle completes at the end of this last data time. Since this 
is a read bus cycle, the bus master reads the four bytes from the four data paths 
when the EBC deactivates CMD#, ending the bus cycle. 
 
In the second example, the bus master is initiating a 32-bit write to a 16-bit 
EISA slave. The 32-bit EISA bus master begins the bus cycle by placing the 
doubleword address on LA[31:2], setting M/IO# to the appropriate state, and 
activating all four byte enable lines, BE#[3:0]. The bus master sets the W/R# 
bus cycle definition line high to indicate a write is in progress and activates the 
START# signal to indicate that the bus cycle has begun. At the midpoint of ad-
dress time, the bus master begins to drive the four bytes onto the four EISA 
data paths. 
 
At the end of address time, which is one BCLK cycle in duration, the following 
events occur: 
• The 32-bit bus master deactivates START# and the EBC activates CMD#. 
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• Using its four SDHDLEx# outputs, the EBC causes the data EBB to latch the 
four data bytes being driven onto the four EISA data paths by the bus mas-
ter. 

• The bus master samples the EX32# line to see if a 32-bit EISA slave is re-
sponding. 

 
When the bus master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 
8 or 16-bit host slave, EX32# will not be returned active. Since a 16-bit EISA 
slave is being addressed in this example, EX32# is not sampled active by the 
bus master. At the end of address time, the EBC also samples EX32#, as well as 
EX16#, M16# and IO16# to determine the size and type of slave device that is 
responding. Since EX16# is sampled active, the EBC determines that the bus 
master is currently addressing a 16-bit EISA slave. Upon determining that the 
addressed slave is not connected to all four data paths, the bus master assumes 
that the EBC and EBB will take care of any data bus steering that may be neces-
sary to accomplish the transfer. In order to let the EBC and EBB use the buses 
for steering, the bus master disconnects from the four data paths, the byte en-
able lines and the START# signal at midpoint of data time. The bus master con-
tinues to drive the doubleword address onto LA[31:2], however, as well as 
M/IO# and W/R#. The bus master then samples the state of the EX32# line at 
the end of each data time until it is sampled active. During this period of time, 
data bus steering is being performed by the EBC and EBB. 
 
The active level on BE0# and BE1# indicates to the addressed 16-bit EISA slave 
that a 16-bit transfer is in progress involving the first two locations in the cur-
rently addressed doubleword. Using its SDOE0# and SDOE1# outputs, the EBC 
causes the data EBB to drive the bytes latched in its path zero and one latches 
onto EISA data paths zero and one. The addressed 16-bit EISA slave responds 
to the write and accepts the two bytes from the EISA data paths zero and one, 
SD[7:0] and SD[15:8]. The EBC monitors EXRDY to determine when the slave is 
ready to end the transfer. The EBC deactivates CMD#, SDOE0# and SDOE1#, 
causing the data EBB to cease driving the two bytes onto EISA data paths zero 
and one. 
 
The EBC now addresses the last two bytes in the addressed doubleword by ac-
tivating BE2# and BE3# and deactivating BE0# and BE1#. The EBC tricks the 
addressed slave into thinking a new bus cycle has begun by generating 
START#, followed by CMD#. Using its SDCPYUP, SDCPYEN02#, 
SDCPYEN13# and SDOE2# output signals, the EBC causes the data EBB to 
drive the two bytes latched in its path two and three latches onto paths two and 
three and copies them down to EISA data paths zero and one. The 16-bit EISA 
slave then accepts the two bytes from EISA data paths zero and one, SD[7:0] 
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and SD[15:8]. The EBC again monitors EXRDY to determine when the slave is 
ready to end the transfer. All four of the four data bytes have been written to 
the target 16-bit EISA slave. The EBC deactivates CMD#, SDCPYEN02#, 
SDCPYEN13# and SDOE2#, causing the data EBB to cease driving the two 
bytes onto EISA data paths two and three and turning off the EBB's two copy 
transceivers. 
 
The EBC activates the EX32# and EX16# lines at the midpoint of the current 
data time to signal the end of data bus steering. At the trailing-edge of the cur-
rent data time, the 32-bit EISA bus master samples EX32# active, indicating that 
the necessary steering has been completed. The bus master can begin to drive 
the address for the next bus cycle onto the buses at the midpoint of the next 
data time. The current bus cycle completes at the end of this last data time. 
Since this is a write bus cycle, the bus master ends the bus cycle when the EBC 
deactivates CMD#. 

Transfer Between 32-bit EISA Bus Master and 
32-bit EISA Slave 

Two examples are described in the following paragraphs: a 32-bit read from 
the 32-bit EISA slave; and a 32-bit write to a 32-bit EISA slave. Refer to figure 
12-4 during the discussion. 
 
In the first example, the bus master is initiating a 32-bit read from a 32-bit 
EISA slave. The 32-bit bus master begins the bus cycle by placing the double-
word address on LA[31:2], setting M/IO# to the appropriate state, and activat-
ing all four byte enable lines, BE#[3:0]. The bus master sets the W/R# bus cycle 
definition line low to indicate a read is in progress and activates the START# 
signal to indicate that the bus cycle has begun.  
 
At the end of address time, which is one BCLK cycle in duration, the 32-bit bus 
master deactivates START#, the EBC activates CMD# and the bus master sam-
ples the EX32# line to see if a 32-bit EISA slave is responding. When the bus 
master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 8 or 16-bit 
host slave, EX32# will not be returned active. Since a 32-bit EISA slave is being 
addressed in this example, EX32# is sampled active by the bus master. At the 
end of address time, the EBC also samples EX32#, as well as EX16#, M16# and 
IO16# to determine the size and type of slave device that is responding. Since 
EX32# is sampled active, the EBC determines that the bus master is currently 
addressing a 32-bit EISA slave. Upon determining that the addressed slave is 
connected to all four data paths, the bus master recognizes that the EBC and 
EBB will not have to perform data bus steering.  
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The active level on all four byte enable lines indicates to the addressed 32-bit 
EISA slave that a 32-bit transfer is in progress involving all four locations in the 
currently addressed doubleword. The addressed 32-bit EISA slave responds to 
the read and drives the four bytes onto their respective EISA data paths. The 
bus master monitors EXRDY to determine when the slave is ready to end the 
transfer and latches the four bytes when the EBC deactivates CMD#. 
 
In the second example, the bus master is initiating a 32-bit write to a 32-bit 
EISA slave. The 32-bit EISA bus master begins the bus cycle by placing the 
doubleword address on LA[31:2], setting M/IO# to the appropriate state, and 
activating all four byte enable lines, BE#[3:0]. The bus master sets the W/R# 
bus cycle definition line high to indicate a write is in progress and activates the 
START# signal to indicate that the bus cycle has begun. At the midpoint of ad-
dress time, the bus master begins to drive the four bytes onto the four EISA 
data paths. 
 
At the end of address time, which is one BCLK cycle in duration, the following 
events occur: 
 
• The 32-bit bus master deactivates START# and the EBC activates CMD#. 
• The bus master samples the EX32# line to see if a 32-bit EISA slave is re-

sponding. 
 
When the bus master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 
8 or 16-bit host slave, EX32# will not be returned active. Since a 32-bit EISA 
slave is being addressed in this example, EX32# is sampled active by the bus 
master. At the end of address time, the EBC also samples EX32#, as well as 
EX16#, M16# and IO16# to determine the size and type of slave device that is 
responding. Since EX32# is sampled active, the EBC determines that the bus 
master is currently addressing a 32-bit EISA slave. Upon determining that the 
addressed slave is connected to all four data paths,  the bus master recognizes 
that the EBC and EBB will not have to perform data bus steering. 
 
The active level on the four byte enable lines indicates to the addressed 32-bit 
EISA slave that a 32-bit transfer is in progress involving all four locations in the 
currently addressed doubleword. The addressed 32-bit EISA slave responds to 
the write and accepts the four bytes from EISA data paths zero through three. 
The bus master monitors EXRDY to determine when the slave is ready to end 
the transfer. Since this is a write bus cycle, the bus master ends the bus cycle 
when the EBC deactivates CMD#. 
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Transfer Between 32-bit EISA Bus Master and 
32-bit Host Slave 

It should be noted that all host bus slaves are 32-bit devices. In this example, 
assume that a 32-bit EISA bus master initiates a bus cycle to read two bytes of 
data from an 32-bit host slave. Assume also that they are the first two bytes in 
the addressed doubleword. The 32-bit EISA bus master begins the bus cycle by 
placing the doubleword address on LA[31:2], setting M/IO# to the appropriate 
state, and activating byte enable lines BE0# and BE1#. The bus master sets the 
W/R# bus cycle definition line low to indicate a read is in progress and acti-
vates the START# signal to indicate that the bus cycle has begun.  
 
The EBC determines that a 32-bit EISA bus master has initiated the bus cycle 
using the criteria in table 12-3. HHLDA, Host Hold Acknowledge, is inactive, 
indicating that the host CPU is not the bus master. EXMASTER# is active and 
MASTER16# is inactive, indicating that a 32-bit EISA bus master is using the 
buses. The EBC determines that a host slave is responding by sampling either 
HLOCMEM# or HLOCIO# active. Having already determined that the bus cy-
cle was initiated by an EISA bus master, the EBC generates EX32# to inform the 
bus master that a 32-bit device is responding. 
 
At the end of address time, which is one BCLK cycle in duration, the 32-bit bus 
master deactivates START#, the EBC activates CMD# and the bus master sam-
ples the EX32# line to see if a 32-bit EISA slave is responding. When the bus 
master is addressing an 8 or 16-bit ISA, a 16-bit EISA slave, or an 8 or 16-bit 
host slave, EX32# will not be returned active. Since a 32-bit slave is being ad-
dressed in this example, EX32# is sampled active by the bus master. Upon de-
termining that the addressed slave is connected to all four data paths, the bus 
master recognizes that the EBC and EBB will not have to perform data bus 
steering.  
 
The EBC propagates the state of the EISA byte enable lines through to the host 
byte enable lines, HBE#[3:0]. The active level on byte enable lines HBE0# and 
HBE1# indicates to the addressed 32-bit host slave that a 16-bit transfer is in 
progress involving the first two locations in the currently addressed double-
word. The addressed 32-bit host slave responds to the read and drives the two 
requested bytes onto their respective EISA data paths, HD[7:0] and HD[15:8]. 
The EBC causes the data EBB to latch the two bytes by activating its 
HDSDLE1# output. It then gates the two latched bytes onto paths zero and one 
of the EISA data bus by activating its SDOE0# and SDOE1# outputs. 
The bus master monitors EXRDY to determine when the slave is ready to end 
the transfer and then latches the two bytes when the EBC deactivates CMD#. 
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Transfer Between 16-bit EISA Bus Master and 8-bit ISA Slave 

This example assumes that a 16-bit EISA bus master is writing two bytes to the 
first two locations of a doubleword located within an 8-bit ISA slave. When the 
16-bit EISA bus master initiates a bus cycle, it performs the following functions: 
 
• Drives the MASTER16# line active to inform the EBC that a 16-bit bus mas-

ter has initiated the bus cycle. 
• Drives the doubleword address onto LA[31:2] and sets the M/IO# line to 

the appropriate state. 
• Drives the START# signal active. 
• sets W/R# and the byte enable lines to the appropriate states. 
• During a write transfer, the bus master starts to drive data onto EISA data 

path zero and/or path one at the midpoint of address time. 
 
At the trailing-edge of address time, the bus master deactivates START# and 
the EBC activates CMD# to indicate the beginning of data time. The bus master 
samples EX16# and EX32# to determine if the currently addressed device is at-
tached to at least the lower two data paths. Since this example assumes that the 
bus master is addressing an 8-bit ISA slave, neither EX16# nor EX32# will be 
sampled active. Upon determining that the addressed slave is not connected to 
the lower two EISA data paths, the bus master assumes that the EBC and EBB 
will take care of any data bus steering that may be necessary to accomplish the 
transfer. Using its SDHDLE0# and SDHDLE1# outputs, the EBC causes the 
data EBB to latch the two bytes being driven onto EISA data paths zero and one 
by the bus master. 
 
In order to let the EBC and EBB use the buses for steering, the bus master dis-
connects from the two data paths, the byte enable lines and the START# signal 
at the midpoint of data time. The bus master continues to drive the double-
word address onto LA[31:2], however, as well as M/IO# and W/R#. The bus 
master then samples the state of the EX16# line at the end of each data time un-
til it is sampled active. During this period of time, data bus steering is being 
performed by the EBC and EBB. 
 
When the EBC determines that an ISA device is responding, the EBC converts 
M/IO# and W/R# to an active level on one of the following ISA bus cycle defi-
nition signals: 
 
• IORC# 
• IOWC# 
• MRDC# 
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• MWTC# 
• SMRDC# 
• SMWTC# 
 
In this example, either the IOWC#, MWTC# or SMWTC# line would be acti-
vated by the EBC. The EBC also converts the setting on the EISA byte enable 
lines to the appropriate setting on SA0, SA1 and SBHE#. In this case, the active 
level on BE0# and BE1# would be converted to a low on SA0, SA1 and SBHE# 
on the ISA address bus, indicating that the bus master is addressing an even lo-
cation and the next sequential odd location and will use the lower two data 
paths to transfer the two bytes. When the bus master has disconnected from the 
data bus, START# and the byte enable lines at the midpoint of data time, the 
EBC initiates the necessary data bus steering. 
 
Using its SDOE0# output, the EBC causes the data byte latched into the data 
EBB's path zero latch to be driven onto path zero, SD[7:0]. This byte is written 
into the even-addressed location within the target 8-bit ISA slave. The EBC 
monitors NOWS# and CHRDY to determine when the slave is ready to end the 
transfer. The EBC then deactivates CMD# and SDOE0#, causing the data EBB 
to cease driving the byte onto EISA data path zero. 
 
Having completed the transfer of the first of the four bytes, the EBC increments 
the address by setting SA0 to a one, SA1 to a zero and SBHE# active. The EBC 
then tricks the addressed slave into thinking a new bus cycle has begun by 
generating START# again, followed by CMD#, causing the appropriate ISA 
command line to be deactivated and then activated again. Using its SDCPYUP, 
SDCPYEN01# and SDOE1# output signals, the EBC causes the data EBB to 
drive the byte latched in its path one latch onto path one and copies it down to 
EISA data path zero. The 8-bit ISA slave then accepts the byte from EISA data 
path zero, SD[7:0]. The EBC again monitors NOWS# and CHRDY to determine 
when the slave is ready to end the transfer. Both data bytes have now been 
written to the target 8-bit ISA slave. The EBC deactivates CMD#, SDCPYEN01# 
and SDOE1#, causing the data EBB to cease driving the byte onto EISA data 
path one and turning off the EBB's copy transceiver. 
 
The EBC activates the EX32# and EX16# lines at the midpoint of the current 
data time to signal the end of data bus steering. At the trailing-edge of the cur-
rent data time, the 16-bit EISA bus master samples EX16# active, indicating that 
the necessary steering has been completed. The bus master can begin to drive 
the address for the next bus cycle onto the buses at the midpoint of the next 
data time. The current bus cycle completes at the end of this last data time. 
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Since this is a write bus cycle, the bus master ends the bus cycle when the EBC 
deactivates CMD#. 

Transfer Between 16-bit EISA Bus Master and 
16-bit ISA Slave 

This example assumes that a 16-bit EISA bus master is reading two bytes from 
the last two locations of a doubleword located within a 16-bit ISA slave. When 
the 16-bit EISA bus master initiates a bus cycle, it performs the following func-
tions: 
 
• drives the MASTER16# line active to inform the EBC that a 16-bit bus mas-

ter has initiated the bus cycle. 
• drives the doubleword address onto LA[31:2] and sets the M/IO# line to 

the appropriate state. 
• drives the START# signal active. 
• sets W/R# and the byte enable lines to the appropriate states. In this exam-

ple, W/R# is set low, indicating a read, and BE2# and BE3# are set active. 
 
At the trailing-edge of address time, the bus master deactivates START# and 
the EBC activates CMD# to indicate the beginning of data time. The bus master 
samples EX16# and EX32# to determine if the currently addressed device is at 
least attached to the lower two data paths and supports EISA bus cycle timing. 
Since this example assumes that the bus master is addressing a 16-bit ISA slave, 
neither EX16# nor EX32# will be sampled active. The EBC will, however, sam-
ple either M16# or IO16# active indicating a 16-bit ISA slave is responding. 
Upon determining that the addressed slave is not capable of responding to 
EISA bus cycle timing, the bus master assumes that the EBC and EBB will take 
care of any data bus steering that may be necessary to accomplish the transfer. 
In this particular example, a 16-bit EISA bus master is communicating with a 
16-bit ISA slave. Since both devices are connected to EISA data paths zero and 
one, no steering is actually necessary. The bus master, however, having no in-
dication as to whether the addressed ISA slave is an 8 or 16-bit device, assumes 
that steering may be necessary and surrenders the data bus, byte enable lines 
and START# to the EBC's control. This is done at the midpoint of data time. 
The bus master continues to drive the doubleword address onto LA[31:2], 
however, as well as M/IO# and W/R#. The bus master then samples the state 
of the EX16# line at the end of each data time until it is sampled active. During 
this period of time, data bus steering is being performed by the EBC and EBB. 
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When the EBC determines that an ISA device is responding, the EBC converts 
M/IO# and W/R# to an active level on one of the following ISA bus cycle defi-
nition signals: 
 
• IORC# 
• IOWC# 
• MRDC# 
• MWTC# 
• SMRDC# 
• SMWTC# 
 
In this example, either the IORC#, MRDC# or SMRDC# line would be activated 
by the EBC. The EBC also converts the setting on the EISA byte enable lines to 
the appropriate setting on SA0, SA1 and SBHE#. In this case, the active level on 
BE2# and BE3# would be converted to a low on SA0, and SBHE# and a high on 
SA1 on the ISA address bus, indicating that the bus master is addressing an 
even location and the next sequential odd location and will use the lower two 
data paths to transfer the two bytes.  
 
The 16-bit ISA device returns the two requested data bytes on EISA data paths 
zero and one and the EBC activates EX16# to inform the bus master that it may 
resume control of the bus cycle. The EBC monitors NOWS# and CHRDY to de-
termine when the slave is ready to end the transfer. The EBC then deactivates 
CMD# and the bus master reads the two bytes from EISA data paths zero and 
one when CMD# goes inactive. 



EISA System Architecture 

160 

Transfer Between 16-bit EISA Bus Master and 
16-bit EISA Slave 

This example assumes that a 16-bit EISA bus master is reading two bytes from 
the last two locations of a doubleword located within a 16-bit EISA slave. When 
the 16-bit EISA bus master initiates a bus cycle, it performs the following func-
tions: 
 
• Drives the MASTER16# line active to inform the EBC that a 16-bit bus mas-

ter has initiated the bus cycle. 
• Drives the doubleword address onto LA[31:2] and sets the M/IO# line to 

the appropriate state. 
• Drives the START# signal active. 
• Drives W/R# and the byte enable lines to the appropriate states. In this ex-

ample, W/R# is set low, indicating a read, and BE2# and BE3# are set ac-
tive. 

 
At the trailing-edge of address time, the bus master deactivates START# and 
the EBC activates CMD# to indicate the beginning of data time. The bus master 
samples EX16# and EX32# to determine if the currently addressed device is at 
least attached to the lower two data paths and supports EISA bus cycle timing. 
Since this example assumes that the bus master is addressing a 16-bit EISA 
slave, EX16# will be sampled active. The EBC will also sample EX16# active, 
indicating a 16-bit EISA slave is responding. Upon determining that the ad-
dressed slave is capable of responding to EISA bus cycle timing, the bus master 
assumes that no data bus steering will be necessary to accomplish the transfer. 
In this particular example, a 16-bit EISA bus master is communicating with a 
16-bit EISA slave. Since both devices are connected to EISA data paths zero and 
one, no steering is necessary.  
 
Using the active level on BE2# and BE3# to determine the requested bytes, the 
16-bit EISA device returns the two requested data bytes on EISA data paths 
zero and one. The EBC monitors EXRDY to determine when the slave is ready 
to end the transfer. The EBC then deactivates CMD# and the bus master reads 
the two bytes from EISA data paths zero and one when CMD# goes inactive. 

Transfer Between 16-bit EISA Bus Master and 
32-bit EISA Slave 

This example assumes that a 16-bit EISA bus master is reading two bytes from 
the last two locations of a doubleword located within a 32-bit EISA slave. When 
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the 16-bit EISA bus master initiates a bus cycle, it performs the following func-
tions: 
 
• drives the MASTER16# line active to inform the EBC that a 16-bit bus mas-

ter has initiated the bus cycle. 
• drives the doubleword address onto LA[31:2] and sets the M/IO# line to 

the appropriate state. 
• drives the START# signal active. 
• sets W/R# and the byte enable lines to the appropriate states. In this exam-

ple, W/R# is set low, indicating a read, and BE2# and BE3# are set active. 
 
At the trailing-edge of address time, the bus master deactivates START# and 
the EBC activates CMD# to indicate the beginning of data time. The bus master 
samples EX16# and EX32# to determine if the currently addressed device is at 
least attached to the lower two data paths and supports EISA bus cycle timing. 
Since this example assumes that the bus master is addressing a 32-bit EISA 
slave, EX32# will be sampled active. The EBC will also sample EX32# active, 
indicating a 32-bit EISA slave is responding. Upon determining that the ad-
dressed slave is capable of responding to EISA bus cycle timing, the bus master 
assumes that no data bus steering will be necessary to accomplish the transfer. 
In this particular example, a 16-bit EISA bus master is communicating with a 
32-bit EISA slave. Since both devices are connected to EISA data paths zero and 
one, no steering is necessary.  
 
Using the active level on BE2# and BE3# to determine the requested bytes, the 
32-bit EISA device returns the two requested data bytes on EISA data paths 
two and three. Since the 16-bit EISA bus master expects to receive the two bytes 
back on EISA data paths zero and one, the EBC must command the data EBB to 
copy the two bytes from paths two and three to paths zero and one. This is ac-
complished by the EBC setting its SDCPYEN02# and SDCPYEN13# outputs ac-
tive and its SDCPYUP output low. 
 
The 16-bit EISA bus master monitors EXRDY to determine when the slave is 
ready to end the transfer. The EBC then deactivates CMD# and the bus master 
reads the two bytes from EISA data paths zero and one when CMD# goes inac-
tive. 
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Transfer Between 16-bit ISA Bus Master and 8-bit ISA Slave 

When the 16-bit ISA bus master initiates a bus cycle, the Central Arbitration 
Control in the ISP chip activates its EMSTR16# output to inform the EBC that a 
16-bit ISA bus master is running a bus cycle. In addition, the ISA bus master 
sets MASTER16# active to indicate that it is a 16-bit bus master. The bus master 
places the address on SA[19:0], SBHE# and LA[23:17]. The EBC commands the 
address EBB to bridge this address over to the EISA address bus on LA[31:2] 
and the EBC converts SA0, SA1 and SBHE# to the correct setting on the EISA 
byte enable lines. 
 
In this example, assume the 16-bit ISA bus master is performing a two byte 
write to an 8-bit ISA slave. The least significant bit of the address, SA0, would 
therefore be zero and SBHE# would be low to address the even address and the 
next sequential odd address as well. The bus master begins to drive the two 
bytes of data onto SD[7:0] and SD[15:8] halfway through address time and ac-
tivates either the IOWC#, MWTC# or SMWTC# ISA bus cycle definition line 
during data time. The EBC and the 16-bit ISA bus master recognize that an 8-
bit ISA slave is responding by sampling EX16#, EX32#, M16#, IO16#, 
HLOCMEM# and HLOCIO# inactive. Since there is no way to get an ISA bus 
master to temporarily float the data bus so the EBC and data EBB can perform 
the two necessary transfers, it is up to the ISA bus master to recognize that it is 
attempting to perform a 16-bit transfer with an 8-bit device and handle the 
multiple transfers itself. 
 
The ISA bus master monitors NOWS# and CHRDY to determine when the 8-bit 
ISA slave is ready to end the transfer of the first byte over EISA data path zero. 
It then ceases to drive the first byte onto path zero and copies the second byte 
from path one, SD[15:8], to path zero, SD[7:0]. In addition, the ISA bus master 
increments the address by setting SA0 to a one and tricks the slave into think-
ing a second bus cycle has been initiated by momentarily turning off the write 
command line (IOWC#, MWTC# or SMWTC#) and then reactivating it. The 
slave accepts the second byte. The master once again monitors NOWS# and 
CHRDY to determine when the slave is ready to end the bus cycle. This com-
pletes the two byte transfer to the 8-bit ISA slave. 

Transfer Between 16-bit ISA Bus Master and 16-bit ISA Slave 

When the 16-bit ISA bus master initiates a bus cycle, the Central Arbitration 
Control in the ISP chip activates its EMSTR16# output to inform the EBC that a 
16-bit ISA bus master is running a bus cycle.  In addition, the ISA bus master 
sets MASTER16# active to indicate that it is a 16-bit bus master. The bus master 
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places the address on SA[19:0], SBHE# and LA[23:17]. The EBC commands the 
address EBB to bridge this address over to the EISA address bus on LA[31:2] 
and the EBC converts SA0, SA1 and SBHE# to the correct setting on the EISA 
byte enable lines. 
 
In this example, assume the 16-bit ISA bus master is performing a two byte 
write to a 16-bit ISA slave. The least significant bit of the address, SA0, would 
therefore be zero and SBHE# would be low to address the even address and the 
next sequential odd address as well. The bus master begins to drive the two 
bytes of data onto SD[7:0] and SD[15:8] halfway through address time and ac-
tivates either the IOWC#, MWTC# or SMWTC# ISA bus cycle definition line 
during data time. The EBC and the 16-bit ISA bus master recognize that a 16-bit 
ISA slave is responding when it samples EX16#, EX32#, M16#, IO16#, 
HLOCMEM# and HLOCIO# and senses either M16# or IO16# active.  
 
The ISA bus master monitors NOWS# and CHRDY to determine when the 16-
bit ISA slave is ready to end the transfer of the two bytes over EISA data paths 
zero and one. This completes the two byte transfer to the 16-bit ISA slave. 

Transfer Between 16-bit ISA Bus Master and 
16-bit EISA Slave 

When the 16-bit ISA bus master initiates a bus cycle, the Central Arbitration 
Control in the ISP chip activates its EMSTR16# output to inform the EBC that a 
16-bit ISA bus master is running a bus cycle.  In addition, the ISA bus master 
sets MASTER16# active to indicate that it is a 16-bit bus master. The bus master 
places the address on SA[19:0], SBHE# and LA[23:17]. The EBC commands the 
address EBB to bridge this address over to the EISA address bus on LA[31:2] 
and the EBC converts SA0, SA1 and SBHE# to the correct setting on the EISA 
byte enable lines. 
 
In this example, assume the 16-bit ISA bus master is performing a two byte 
write to a 16-bit EISA slave. The least significant bit of the address, SA0, would 
therefore be zero and SBHE# would be low to address the even address and the 
next sequential odd address as well. The EBC translates this to an active level 
on BE0# and BE1#. The EBC sets START# active during address time for the 
benefit of EISA slaves. The bus master begins to drive the two bytes of data 
onto SD[7:0] and SD[15:8] halfway through address time and activates either 
the IOWC#, MWTC# or SMWTC# ISA bus cycle definition line during data 
time. At the end of address time, the EBC sets CMD# active to indicate that it is 
data transfer time. The EBC converts the active ISA bus cycle line to the correct 
setting on the EISA bus cycle definition lines, M/IO# and W/R#. The EBC rec-
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ognizes that a 16-bit EISA slave is responding when it samples EX16#, EX32#, 
M16#, IO16#, HLOCMEM# and HLOCIO# and senses EX16# active. If a mem-
ory bus cycle is in progress, the active level on EX16# is converted to an active 
level on M16#. If an I/O bus cycle is in progress, the active level on EX16# is 
converted to an active level on IO16#. This informs the ISA bus master that it is 
conversing with a 16-bit device and data bus steering is therefore unnecessary.  
 
If the addressed EISA slave requires additional time to complete the transfer, it 
deactivates EXRDY until it is ready. The EBC converts EXRDY to CHRDY for 
the benefit of the ISA bus master. The ISA bus master monitors NOWS# and 
CHRDY to determine when the 16-bit EISA slave is ready to end the transfer of 
the two bytes over EISA data paths zero and one. This completes the two byte 
transfer to the 16-bit EISA slave. 

Transfer Between 16-bit ISA Bus Master and 
32-bit EISA Slave 

In this example, assume that a 16-bit ISA bus master is writing two bytes of 
data to the second word of a doubleword within a 32-bit EISA slave. The bus 
master activates MASTER16# to inform the EBC that it is a 16-bit bus master. 
The Central Arbitration Control in the ISP chip activates EMSTR16# to inform 
the EBC that a 16-bit ISA bus master is performing a bus cycle.  
 
The bus master places the address on SA[19:0], SBHE# and LA[23:17]. SA1 is 
set high, SA0 low and SBHE# low. The EBC activates START# during address 
time. EBC bridges this address across to the EISA address bus, LA[31:2], and 
converts SA0, SA1 and SBHE# to an active level on BE2# and BE3#. The EBC 
converts the active level on IOWC#, MWTC# or SMWTC# to the corresponding 
setting on the EISA bus cycle definition lines, M/IO# and W/R#. The EBC also 
deactivates START# and activates CMD# at the beginning of data transfer time. 
The bus master drives the two bytes onto EISA data paths zero and one. 
Using its SDCPYEN02#, SDCPYEN13# and SDCPYUP outputs, the EBC causes 
the data EBB to copy the two bytes on paths zero and one to paths two and 
three. The addressed 32-bit EISA slave is expecting to receive the two bytes on 
the upper two data paths. The EBC monitors the EXRDY line to determine 
when the 32-bit EISA slave is ready to end the bus cycle. It then deactivates 
CMD#. The EISA slave latches the two data bytes from EISA data paths two 
and three when CMD# goes high at the end of the bus cycle. 
Transfer Between 32-bit Host CPU and 32-bit Host Slave 

All host bus I/O and memory devices are 32-bit devices. The EBC recognizes 
that the host CPU is performing a bus cycle when HHLDA, Host Hold Ac-
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knowledge, is inactive and HADS0# and HADS1# are set active. The HADSx# 
lines are connected to the CPU's Host Address Status output. The host CPU 
places the address on HA[31:2] and sets the host byte enable lines, HBE#[3:0], 
to the appropriate state. The EBC causes the address EBB to broadcast the ad-
dress onto the EISA and ISA address buses. The host CPU indicates the type of 
bus cycle on HM/IO#, HW/R# and HD/C#. When the host slave recognizes 
that it is being addressed, it activates either HLOCIO# (host local IO) or 
HLOCMEM# (host local memory).  
 
Since the host CPU is communicating with a 32-bit slave on its own bus, the 
EBC and the data EBB do not become involved in the bus cycle. In other words, 
the data is not bridged over to the EISA/ISA bus. 

Transfer Between 32-bit Host CPU and 8-bit ISA Slave 

The EBC recognizes that the host CPU is performing a bus cycle when 
HHLDA, Host Hold Acknowledge, is inactive and HADS0# and HADS1# are 
set active. The HADSx# lines are connected to the CPU's Host Address Status 
output. The host CPU places the address on HA[31:2] and sets the host byte 
enable lines, HBE#[3:0], to the appropriate state. The EBC causes the address 
EBB to broadcast the address onto the ISA and EISA address buses as well. In 
this example, assume that the host CPU is writing two bytes to the 8-bit ISA 
slave over host data paths one and two. This means that the host CPU is setting 
BE1# and BE2# active. SA0 is set high, while SA1 and SBHE# are set low. The 
host CPU indicates the type of bus cycle on HM/IO#, HW/R# and HD/C#.  
 
Since an 8-bit ISA slave is being addressed, the EBC samples inactive levels on 
M16#, IO16#, EX16#, EX32#, HLOCIO# and HLOCMEM#.  The EBC latches the 
two bytes into the path one and two latches in the data EBB using its 
HDSDLE1# output. It then outputs the two bytes onto the EISA data bus by ac-
tivating its SDOE1# and SDOE2# outputs. The data byte on EISA data path one 
is copied down to path zero when the EBC activates its SDCPYEN01# output 
and sets SDCPYUP low. The EBC monitors NOWS# and CHRDY to determine 
when the ISA slave is ready to end the byte transfer. The EBC turns off 
SDCPYEN01# and SDOE1# to turn off the copy transceiver and the cause the 
path one latch in the data EBB to stop outputting the first data byte. 
Having completed the transfer of the first byte, the EBC then increments the 
address on the ISA address bus by setting SA1 and SBHE# high and SA0 low. 
The ISA slave is tricked into thinking another bus cycle is initiated by the EBC 
momentarily turning off the IOWC# or MWTC# line and then reactivating it. 
The EBC uses its SDCPYEN02# and SDCPYUP outputs to copy the second data 
byte from EISA data path two to path zero.  The EBC again monitors NOWS# 
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and CHRDY to determine when the ISA slave is ready to end the byte transfer. 
The EBC turns off SDCPYEN02# and SDOE2# to turn off the copy transceiver 
and the cause the path two latch in the data EBB to stop outputting the second 
data byte. 
 
Both bytes have now been transferred to the 8-bit ISA slave. The EBC now acti-
vates HRDYO#, host ready output, to tell the host CPU that it's ok to end the 
bus cycle. 

Transfer Between 32-bit Host CPU and 16-bit ISA Slave 

The EBC recognizes that the host CPU is performing a bus cycle when 
HHLDA, Host Hold Acknowledge, is inactive and HADS0# and HADS1# are 
set active. The HADSx# lines are connected to the CPU's Host Address Status 
output. The host CPU places the address on HA[31:2] and sets the host byte 
enable lines, HBE#[3:0], to the appropriate state. The EBC causes the address 
EBB to broadcast the address onto the ISA and EISA address buses as well. In 
this example, assume that the host CPU is writing two bytes to a 16-bit ISA 
slave over host data paths two and three. This means that the host CPU is set-
ting BE2# and BE3# active. SA1 is set high, while SA0 and SBHE# are set low. 
The host CPU indicates the type of bus cycle on HM/IO#, HW/R# and HD/C#.  
 
Since a 16-bit ISA slave is being addressed, the EBC samples an active level on 
M16# or IO16#. The EBC latches the two bytes into the path two and three 
latches in the data EBB using its HDSDLE1# output. It then outputs the two 
bytes onto the EISA data bus by activating its SDOE2# output. The data bytes 
on EISA data paths two and three are copied down to paths zero and one when 
the EBC activates its SDCPYEN02# and SDCPYEN13# outputs and sets 
SDCPYUP low. The EBC monitors NOWS# and CHRDY to determine when the 
ISA slave is ready to end the transfer. The EBC turns off SDCPYEN02#, 
SDCPYEN13# and SDOE2# to turn off the copy transceiver and the cause the 
path two and three latches in the data EBB to stop outputting the two data 
bytes. 
 
Both bytes have now been transferred to the 16-bit ISA slave. The EBC now ac-
tivates HRDYO#, host ready output, to tell the host CPU that it's ok to end the 
bus cycle. 

Transfer Between 32-bit Host CPU and 16-bit EISA Slave 

The EBC recognizes that the host CPU is performing a bus cycle when 
HHLDA, Host Hold Acknowledge, is inactive and HADS0# and HADS1# are 
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set active. The HADSx# lines are connected to the CPU's Host Address Status 
output. The host CPU places the address on HA[31:2] and sets the host byte 
enable lines, HBE#[3:0], to the appropriate state. The EBC causes the address 
EBB to broadcast the address onto the ISA and EISA address buses as well. In 
this example, assume that the host CPU is writing two bytes to a 16-bit EISA 
slave over host data paths two and three. This means that the host CPU is set-
ting BE2# and BE3# active. The EBC activates BE2# and BE3# on the EISA ad-
dress bus. The host CPU indicates the type of bus cycle on HM/IO#, HW/R# 
and HD/C#.  
 
Since a 16-bit EISA slave is being addressed, the EBC samples an active level on 
EX16#. The EBC latches the two bytes into the path two and three latches in the 
data EBB using its HDSDLE1# output. It then outputs the two bytes onto the 
EISA data bus by activating its SDOE2# output. The data bytes on EISA data 
paths two and three are copied down to paths zero and one when the EBC acti-
vates its SDCPYEN02# and SDCPYEN13# outputs and sets SDCPYUP low. The 
EBC monitors EXRDY to determine when the EISA slave is ready to end the 
transfer. The EBC turns off SDCPYEN02#, SDCPYEN13# and SDOE2# to turn 
off the copy transceiver and the cause the path two and three latches in the 
data EBB to stop outputting the two data bytes. 
 
Both bytes have now been transferred to the 16-bit EISA slave. The EBC now 
activates HRDYO#, host ready output, to tell the host CPU that it's ok to end 
the bus cycle. 

Transfer Between 32-bit Host CPU and 32-bit EISA Slave 

The EBC recognizes that the host CPU is performing a bus cycle when 
HHLDA, Host Hold Acknowledge, is inactive and HADS0# and HADS1# are 
set active. The HADSx# lines are connected to the CPU's Host Address Status 
output. The host CPU places the address on HA[31:2] and sets the host byte 
enable lines, HBE#[3:0], to the appropriate state. The EBC causes the address 
EBB to broadcast the address onto the ISA and EISA address buses as well. In 
this example, assume that the host CPU is writing four bytes to a 32-bit EISA 
slave using all four host data paths. This means that the host CPU is setting all 
four host byte enable lines, HBE#[3:0], active. The EBC activates BE#[3:0] on the 
EISA address bus. The host CPU indicates the type of bus cycle on HM/IO#, 
HW/R# and HD/C#.  
Since a 32-bit EISA slave is being addressed, the EBC samples an active level on 
EX32#. The EBC latches the four bytes into the data EBB's data latches using its 
HDSDLE1# output. It then outputs the four bytes onto the EISA data bus by ac-
tivating its SDOE0#, SDOE1# and SDOE2# outputs. The EBC monitors EXRDY 
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to determine when the EISA slave is ready to end the transfer. The EBC turns 
off SDOE0#, SDOE1# and SDOE2# to cause the four data EBB data latches to 
stop outputting the four data bytes. 
 
All four bytes have now been transferred to the 32-bit EISA slave. The EBC 
now activates HRDYO#, host ready output, to tell the host CPU that it's ok to 
end the bus cycle. 

Address Buffer Control and EBB 

Under the control of the EBC, the address EBB ensures that the address gener-
ated by the current bus master is seen by every host, EISA and ISA slave in the 
system. Along with the address the state of the M/IO# bus cycle definition line 
must be propagated onto the EISA and host address buses so EISA and host 
slaves can discern memory addresses from I/O addresses. Table 12-4 defines 
the EBC output signals used to control the address EBB. Figure 12-5 provides a 
functional view of the address EBB and illustrates the linkage between the EBC 
and the address EBB. The figure also illustrates the direction of address flow 
through the three latching transceivers when the host CPU, an ISA master or an 
EISA master is the bus master. Table 12-5 shows the state of each of the EBC's 
address EBB control lines when each type of master is running a bus cycle. En-
tries designated as “transparent” indicate that the latch control line is left active 
for the entire bus cycle, causing the respective latching transceiver to be trans-
parent.  
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Table 12-4. EBC Output Signals Used to Control the Address EBB 
Signal Description 

HALAOE# When set active by the EBC, causes the address EBB's upper and 
lower host/EISA latching transceivers to output the previously 
latched host address onto the EISA LA bus. LA[23:2] and 
LA#[31:24]. 

HALE# When set active by the EBC, causes the address EBB's upper and 
lower host/EISA latching transceivers to latch the address on the 
EISA LA bus, LA[31:2]. 

LASAOE# When set active by the EBC, causes the address EBB's EISA/ISA 
latching transceiver to output the previously LA address onto the SA 
bus, SA[19:2].  

LAHAOE# When set active by the EBC, causes the address EBB's upper and 
lower host/EISA latching transceivers to output the previously 
latched EISA address onto the host address bus, HA[31:2]. 

LALE# When set active by the EBC, causes the address EBB's upper and 
lower host/EISA latching transceivers to latch the address on the 
host address bus, HA[31:2]. 

SALAOE# When set active by the EBC, causes the address EBB's EISA/ISA 
latching transceiver to output the previously latched SA address 
onto LA bus, bits LA[16:2]. 

SALE# When set active by the EBC, causes the address EBB to latch the ad-
dress on LA[19:2] into the EISA/ISA latching transceiver. 

 
Table 12-5. Address EBB Control Line States 

 Current Bus Master Type 
Control 

Line 
 

Host CPU 
 

EISA  
 

ISA 
 

DMA 
 

Refresh 

HALAOE# active inactive inactive active active 
HALE# transparent transparent transparent transparent transparent 
LASAOE# active active inactive active active 
LAHAOE# inactive active active inactive inactive 
LALE# pulsed to latch 

HA bus 
na na transparent transparent 

SALAOE# inactive inactive active inactive inactive 
SALE# pulsed to latch 

LA into SA 
latch 

pulsed to latch 
LA into SA 
latch 

transparent pulsed to latch 
LA into SA 
latch 

pulsed to 
latch LA into 
SA latch 
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Host CPU Bus Master 

Refer to tables 12-5 and 12-4 and figure 12-5 while reading this description. 
When the host CPU is bus master, the address on the host address bus, 
HA[31:2], and the state of the HM/IO# bus cycle definition line must be propa-
gated onto the EISA address bus, consisting of LA[23:2], LA#[31:24] and 
M/IO#, and the lower part of the ISA address bus, SA[19:2]. 
 
The pulse on  LALE# causes the address EBB to latch the address from the host 
bus. The active on HALAOE# and the steady active on HALE# gates latched 
host address onto the EISA address bus, LA[23:2] and LA#[31:24]. It should be 
noted that the upper Host/EISA Latching Transceiver inverts address bits 
31:24. The pulse on SALE# latches LA[19:2] into the EISA/ISA Latching Trans-
ceiver, while the active on LASAOE# allows it to output the latched address 
onto the SA bus, SA[19:2]. 

EISA Bus Master 

Refer to tables 12-5 and 12-4 and figure 12-5 while reading this description. 
When an EISA master is the bus master, the address on the EISA address bus, 
LA[23:2] and LA#[31:24], and the state of the M/IO# bus cycle definition line 
must be propagated onto the host address bus, consisting of HA[31:2] and 
HM/IO#, and onto the lower part of the ISA address bus, SA[19:2]. 
 
The active on LAHAOE# and the steady active on HALE# allows the address 
on the EISA address bus to flow onto the host address bus. The pulse on SALE# 
causes the lower part of the EISA address, LA[19:2], to be latched into the 
EISA/ISA latching transceiver, while the active on LASAOE# allows the 
latched LA address to be driven onto the SA bus, SA[19:2]. 

ISA Bus Master 

Refer to tables 12-5 and 12-4 and figure 12-5 while reading this description. 
When an ISA master is the bus master, the address on the ISA address bus, 
SA[19:2] and LA[23:17], must be propagated onto the host address bus, 
HA[31:2], and onto the lower part of the EISA address bus, LA[23:2]. Since ISA 
bus masters do not use LA#[31:24], pull-up resistors force these lines inactive 
when an ISA bus master is placing an address on the address bus. 
 
The steady active state of SALE# and the active state of SALAOE# allows the 
portion of the ISA address on SA[16:2] to flow through the EISA/ISA latching 
transceiver onto the lower part of the EISA address bus, LA[16:2]. The ISA bus 
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master places address bits 23:17 directly onto LA[23:17] of the EISA/ISA ad-
dress bus. The active on LAHAOE# and the steady active state of HALE# per-
mits the address on the EISA address bus, LA[23:2] and LA#[31:24], to flow 
through onto the host address bus, HA[31:2]. The ones on LA#[31:24] are in-
verted by the upper Host/EISA latching transceiver before being driven onto 
HA[31:2]4. 

Refresh Bus Master 

Refer to tables 12-5 and 12-4 and figure 12-5 while reading this description. The 
Refresh logic is located in the ISP chip. When the Refresh logic becomes bus 
master and drives the next sequential row address onto the host address bus, 
the row address must be propagated onto the EISA and ISA addresses buses as 
well. 
 
The active state of HALAOE# and the steady active state of LALE# allows the 
row address to flow from the host address bus, HA[31:2], to the EISA address 
bus, LA[31:2]. The pulse on SALE# latches the row address into the EISA/ISA 
latching transceiver and the active state of LASAOE# causes the row address to 
be driven onto the SA bus, SA[19:2]. The Refresh logic in the ISP also sets the 
HM/IO# bus cycle definition line high to indicate that a memory row address 
is on the bus. The EBC passes the state of the host bus HM/IO# line to the EISA 
M/IO# line. 

DMA Bus Master 

Refer to tables 12-5 and 12-4 and figure 12-5 while reading this description. The 
DMA controllers are located in the ISP chip and output a memory address onto 
the host address bus, HA[31:2], when a DMA channel becomes bus master. The 
HM/IO# line is also set high  by the ISP to indicate that a memory address is 
present on the bus. The EBC must command the address EBB to pass the mem-
ory address and the state of HM/IO# onto the EISA address bus, LA[23:2] and 
LA#[31:24] plus M/IO#, and onto the ISA address bus, consisting of SA[19:2] 
and LA[23:17].  
 
The active state of HALAOE# and the steady active state of LALE# allows the 
memory address on the host address bus, HA[31:2], to flow through the upper 
and lower Host/EISA latching transceivers onto the EISA data bus, LA[23:2] 
and LA#[31:24]. The pulse on SALE# latches the memory address on the host 
address bus, HA[31:2], into the EISA/ISA latching transceiver and the active 
state of LASAOE# allows the transceiver to drive it onto the SA bus, SA[19:2]. 
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Figure 12-5. Block Diagram of Address EBB 

Host Bus Interface Unit 

The host bus interface unit pictured in figure 12-2 observes bus cycles initiated 
by the host CPU. If neither HLOCMEM# nor HLOCIO# are sensed active, the 
host bus master is addressing a slave on the EISA or ISA bus. In this case, the 
host bus interface unit commands either the EISA or ISA interface unit in the 
EBC to run a bus cycle. The host bus interface unit awaits completion of the bus 
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cycle and sends ready to the host CPU. Table 12-6 provides a description of the 
host bus interface signals. The description of these signals assumes that the 
EBC is configured for the 82350 environment. To configure the EBC for the 
82350 environment, two conditions must be met: 
 
• The AMODE input must be strapped low. 
• The HNA#/SBMODE# input is sampled on the leading-edge of the 

SPWROK input. To select the 82350 configuration, it must be sampled high. 
 

Table 12-6. Host Interface Unit Signal Descriptions 
Signal Direction Description 

AMODE input Address Mode. Configures the EBC for 82350 
mode when strapped low; for 82350DT mode when 
strapped high. 

HBE#[3:0] input/output Host Byte Enables. When the host CPU is bus mas-
ter, these inputs define the target location(s) within 
the addressed doubleword. The EBC's ISA inter-
face unit converts them to SA0, SA1 and SBHE# on 
the ISA address bus, while the EBC's EISA inter-
face unit converts them to BE#[3:0] on the EISA 
address bus. 
When an EISA bus master has initiated a bus cycle, 
the state of the BE#[3:0] lines on the EISA address 
bus are output onto the HBE#[3:0] lines on the host 
address bus.  
When an ISA bus master has initiated a bus cycle, 
the state of the SA0, SA1 and SBHE# lines on the 
ISA address bus are converted and output onto the 
HBE#[3:0] lines on the host address bus.  

HADS0# and 
HADS1# 

input Host Address Status 0 and 1. The host CPU or the 
host cache controller's ADS# output is connected to 
the HADS0# input. ADS# indicates that it is ad-
dress time and a valid address and bus cycle defi-
nition are present on the host bus. Some cache con-
trollers perform more than one fetch in order to fill 
a cache line. In this case, the cache controller gen-
erates HADS0# when it initiates the bus cycle for 
the first fetch. This triggers an state machine that 
generates HADS1# when it initiates any subse-
quent bus cycles for the remaining fetches. Inter-
nally, these two input signals are “anded” together. 
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HNA# output Host Next Address. In a system with a 386 host 
CPU, this output is used to tell the 386 whether it 
can output the address for the next bus cycle early. 

HD/C# input/output Host Data or Control. Used as inputs when the 
host CPU is bus master, as outputs when a device 
other than the host CPU is bus master. In combina-
tion with HW/R# and HM/IO#, defines the bus 
cycle type. 

HW/R# input/output Host Write or Read. See HD/C#. 
HM/IO# input/output Host Memory or I/O. See HD/C#. 
HLOCK# input Host Lock. This input is connected to the host 

CPU's LOCK# output. Will be active when the host 
CPU is locking multiple bus cycles together to pre-
vent other bus masters from requesting the buses 
until lock goes inactive. 

HRDYI# input Host Ready Input. The host interface unit monitors 
this signal to determine when a host-initiated bus 
cycle has completed. 

HRDYO# output Host Ready Output. When the host CPU is access-
ing an EISA or ISA slave, the host interface unit 
activates HRDYO# to signal the end of the bus cy-
cle to the host CPU. 

HERDYO# output Host Early Ready Output. This is an earlier ver-
sion of HRDYO# to be used with higher speed host 
CPUs that require more setup time. 

HHOLD output Host Hold Request. When the Central Arbitration 
Control in the ISP chip must grant the buses to a 
device other than the host CPU, it must first take 
the buses away from the host CPU. To do this, the 
ISP activates DHOLD. DHOLD causes the EBC's 
host interface unit, in turn, to activate HHOLD to 
seize the host bus from the host CPU. In response, 
the host CPU surrenders the buses and activates 
HHLDA, Host Hold Acknowledge. The EBC then 
activates DHLDA to inform the Central Arbitration 
Control in the ISP that it may grant the buses to 
another device. 

HHLDA input Host Hold Acknowledge. See HHOLD. 

Table 12 - 6, cont. Table 12 - 6, cont. 
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HLOCMEM# input Host Local Memory. This signal is set active by the 
memory address decode logic when memory resid-
ing on the host bus is being addressed. If the cur-
rent bus master is the host CPU, this means that the 
EBC does not have to activate the data EBB or run 
a bus cycle on the ISA or EISA bus. 

HLOCIO# input Host Local I/O. This signal is set active by the I/O 
address decode logic when an I/O device residing 
on the host bus is being addressed. If the current 
bus master is the host CPU, this means that the 
EBC does not have to activate the data EBB or run 
a bus cycle on the ISA or EISA bus. 

HGT16M# input Host Greater Than 16MB. This signal is only 
driven by the ISP chip during DMA bus cycles. If 
the DMA channel is generating a memory address 
below 16MB (00000000h – 00FFFFFFh), HGT16M# 
is high and the ISA interface unit will generate 
MRDC# or MWTC#. For addresses above 16MB, 
the MRDC# or MWTC# signals are not generated. 
This is necessary because some DMA devices use 
the ISA memory command signals to start a bus 
cycle early. 

PWEN# input Posted Write Enable. If sampled active at the be-
ginning of a host CPU memory write bus cycle to 
an EISA or ISA memory slave, the EBC's host inter-
face unit causes the EBC's Data Buffer Control logic 
to latch the write data into the data EBB. The host 
interface unit then activates the HRDYO# signal to 
let the host CPU end the memory write bus cycle. 
The EBC's host interface unit, in conjunction with 
either the ISA or EISA interface unit, then writes 
the posted data to the target ISA or EISA memory 
slave. This feature allows single host memory 
writes to EISA or ISA memory to complete quickly. 
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HSTRETCH# input Host Bus Stretch. This input can be used by host 
bus slaves during EISA/ISA or DMA bus master 
cycles to stretch the low part of BCLK during 
CMD# (data time). This has the effect of stalling the 
EISA/ISA master without adding BCLK wait 
states. 

HKEN# input Host Cache Enable. When sampled active, indi-
cates that the host CPU is requesting a cache line 
fill operation. 

ISA Bus Interface Unit 

The ISA interface unit pictured in figure 12-2 observes bus cycles initiated by 
ISA bus masters. The ISA bus interface unit awaits completion of the bus cycle. 
If either the host CPU or an EISA bus master is addressing an ISA slave, the 
ISA interface unit runs a bus cycle. When the bus cycle on the ISA bus is com-
pleted, EXRDY or HRDYO# is sent to the EISA or host bus master to terminate 
the bus cycle. Table 12-7 provides a description of the ISA interface signals. For 
a complete description of the ISA bus, refer to the MindShare book entitled ISA 
System Architecture. 
 

Table 12 - 6, cont. 
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Table 12-7.  ISA Interface Unit Signal Descriptions 
Signal Direction Description 

BALE output Bus Address Latch Enable. During an ISA bus cy-
cle, BALE is set high at the midpoint of address time 
and dropped low at the end of address time. The 
address is gated from the LA bus to the SA bus 
when BALE goes high and is latch when BALE goes 
low at the end of address time. 

SA0, SA1, 
BHE# 

input/output Least-significant part of the ISA address bus. These 
are inputs when the bus cycle is being run by an ISA 
bus master and outputs when the bus cycle is being 
run by an EISA or host master. 

IORC# input/output The I/O Read Command line. Generated by an ISA 
bus master when it is performing an I/O read bus 
cycle. When an EISA or host bus master is perform-
ing an I/O read bus cycle, the EBC's ISA interface 
unit generates this signal. 

IOWC# input/output The I/O Write Command line. Generated by an ISA 
bus master when it is performing an I/O write bus 
cycle. When an EISA or host bus master is perform-
ing an I/O write bus cycle, the EBC's ISA interface 
unit generates this signal. 

MRDC# input/output The Memory Read Command line. Generated by 
an ISA bus master when it is performing a memory 
read bus cycle. When an EISA or host bus master is 
performing a memory read bus cycle, the EBC's ISA 
interface unit generates this signal. 

MWTC# input/output The Memory Write Command line. Generated by 
an ISA bus master when it is performing a memory 
write bus cycle. When an EISA or host bus master is 
performing a memory write bus cycle, the EBC's ISA 
interface unit generates this signal. 

SMRDC# output Standard Memory Read Command line. The EBC's 
ISA interface unit generates this signal when any 
bus master is reading from memory space in the 
00000000h – 000FFFFFh range. A memory address 
decoder located in the ISP chip generates GT1M# 
whenever it detects a memory address in this range, 
causing the ISP interface unit to generate either 
SMRDC# or SMWTC#. 

Table 12 - 7, cont. 
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SMWTC# output Standard Memory Write Command line. The EBC's 
ISA interface unit generates this signal when any 
bus master is writing to memory space in the 
00000000h – 000FFFFFh range. A memory address 
decoder located in the ISP chip generates GT1M# 
whenever it detects a memory address in this range, 
causing the ISP interface unit to generate either 
SMRDC# or SMWTC#. 

IO16# input/output IO Size 16. Generated by a 16-bit ISA I/O slave 
when addressed by a bus master. Set active by the 
EBC's ISA interface unit when an ISA bus master is 
addressing a host I/O slave (HLOCIO# sampled 
active). EISA slaves that support ISA bus masters 
must assert IO16# as well as EX16# or EX32# when 
addressed. 

M16# input Memory Size 16. Generated by a 16-bit ISA memory  
slave when addressed by a bus master. 

NOWS# input No Wait States. An ISA slave may generate NOWS# 
when it has decoded its address and a read or write 
command line has been activated. When set active 
by the slave, it conditions the default ready timer (in 
the ISA interface unit) to set ready active at the end 
of the current BCLK. It is used to shorten the num-
ber of wait states appended to a bus cycle by the 
default ready timer. 

CHRDY input/output Channel Ready. If an ISA slave requires more time 
to complete a bus cycle than allowed by the default 
ready timer, it may set the CHRDY line low. This 
prevents the default ready timer from timing out 
until the slave is ready to end the bus cycle. When 
the slave is ready to end the bus cycle, it sets 
CHRDY active again, permitting the default ready 
timer to time out. 

REFRESH# input Generated by the Refresh logic in the ISP chip when 
the Refresh logic is bus master and is performing a 
refresh bus cycle. 

MASTER16# input 16-bit Bus Master. Generated by either ISA or 16-bit 
EISA bus master when it initiates a bus cycle. 
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EISA Bus Interface Unit 

The EISA interface unit pictured in figure 12-2 observes bus cycles initiated by 
EISA bus masters. The EISA bus interface unit awaits completion of the bus cy-
cle. If either the host CPU or an ISA bus master is addressing an EISA slave, the 
EISA interface unit runs a bus cycle.  Table 12-8 provides a description of the 
EISA interface signals. For a complete description of the EISA bus, refer to ear-
lier sections of this publication. 
 

Table 12-8. EISA Interface Unit Signal Descriptions 
Signal Direction Description 

BE#[3:0] input/output Byte Enable lines. Set to the appropriate states during 
a bus cycle initiated by an EISA bus master. When an 
ISA master initiates a bus cycle, the EBC's EISA inter-
face unit converts SA0, SA1 and SBHE# to the corre-
sponding setting on the BE lines. When the host CPU 
initiates a bus cycle, the state of the host byte enables 
lines, HBE#[3:0], are passed onto the EISA byte enable 
lines by the EBC. 

M/IO# input/output Memory or I/O bus cycle definition line. Generated by 
an EISA master or by the EBC when the host CPU or 
an ISA master is performing a bus cycle. 

W/R# input/output Write or Read bus cycle definition line. Generated by 
an EISA master or by the EBC when the host CPU or 
an ISA master is performing a bus cycle. 

LOCK# output Generated by the EBC when the host CPU is bus mas-
ter and has asserted HLOCK# to the EBC. An active 
level on the EISA LOCK# line prevents other bus mas-
ters from requesting the buses until LOCK# goes 
away. 

START# input/output Set active by an EISA bus master when it initiates a 
bus cycle and deactivated at the end of address time. 
Controlled by the EBC when an ISA master or the host 
CPU is performing a bus cycle to signal the start of the 
bus cycle on the EISA bus. Also controlled by the EBC 
during DMA transfers and under some conditions 
requiring data bus steering. 

CMD# output Command. Set active by the EBC at the start of data 
time and kept active until the end of the bus cycle. 

Table 12 - 8, cont. 
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EXRDY input/output EISA Ready. Set inactive by the currently addressed 
EISA slave if it requires more time to complete a bus 
cycle. Controlled by the EBC when an EISA bus mas-
ter is addressing an ISA or host slave and under some 
conditions when data bus steering is necessary. 

MSBURST# input/output Master Burst. Generated by an EISA or host master 
(through the EBC) when the addressed slave has indi-
cated it supports burst bus cycles by asserting 
SLBURST#. Set active by the EISA master or the EBC 
at the midpoint of the first data time and sampled by 
the slave at the end of the first data time. 

SLBURST# input Slave Burst. Used by the currently addressed EISA 
slave to indicate it supports burst bus cycles. Sampled 
by the master at the end of address time. 

EX32# input/output EISA Size 32. Generated by the currently addressed 
slave if it is a 32-bit EISA slave. Generated by the EBC 
at the end of data bus steering to signal return of bus 
cycle control to the EISA bus master. Also generated 
by the EBC if an EISA bus master addresses a host 
slave (HLOCMEM# or HLOCIO# sampled active be 
EBC). 

EX16# input/output EISA Size 16. Generated by the currently addressed 
slave if it is a 16-bit EISA slave. Generated by the EBC 
at the end of data bus steering to signal return of bus 
cycle control to the EISA bus master. Also generated 
by the EBC if an EISA bus master addresses a host 
slave (HLOCMEM# or HLOCIO# sampled active be 
EBC). 

Cache Support  

The EBC provides two output signals to support bus snooping. HSSTRB# is 
used in 386/82385 host CPU systems, while QHSSTRB# is used in 486 host 
CPU systems. These signals indicate to a system cache controller that a bus 
master is writing to system memory. The RDE#, or Ready Delay Enable,  input 
instructs the cache support unit in the EBC to add a wait state by delaying 
HERDYO# and HRDYO# during a host to EISA/ISA read to allow increased 
cache SRAM write data setup time during cache read miss bus cycles. 

Reset Control 
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Table 12-9 describes the signals associated with the EBC's Reset Control unit 
(see figure 12-2).  
 

Table 12-9. The EBC's Reset Control Interface Signals 
Signal Direction Description 

RST out System Reset. Remains active until 10 microseconds after 
SPWROK goes active. Resets major system components to 
a known state. 

RSTCPU out Reset Host CPU. Driven active when: power isn't stable 
(SPWROK inactive); a shutdown bus cycle is detected on 
the host bus; or RSTAR# is sensed active. See RSTAR# de-
scription. RSTCPU resets just the host CPU. 

RST385 out Reset 385 cache controller. Driven active under the same 
conditions as RSTCPU. Resets the host bus cache control-
ler, clearing all tag valid bits. In other words, the cache is 
flushed. 

RSTAR# in Restart. Generated under software control by: issuing a 
CPU reset command to the keyboard controller; or tog-
gling the fast hot reset bit in the PS/2 compatibility port at 
I/O port 92h. Used by 286-specific code to reset the 286 
and return it to real mode from protected mode. 

SPWROK in System Power OK. Provided as an output from the power 
supply. When inactive, the Reset Control unit sets 
RSTCPU, RST385 and RST active. 

Slot-Specific I/O Support 

During I/O bus cycles, the EBC generates a pulse on the signal AENLE#, AEN 
Latch Enable. This is used by the AEN logic to latch the active AENx line. For 
more information on slot-specific I/O support and AEN decode, refer to the 
chapter entitled “EISA System Configuration.” 

Clock Generator Unit 

Table 12-10 provides a description of the signals related to the EBC's Clock 
Generator unit. 
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Table 12-10. EBC's Clock Generation Unit Signal Description 
Signals Direction Description 

HCLKCPU in Host CPU Clock.   
BCLK out Bus Clock. BCLK is generated by dividing the 

HCLKCPU input clock by a factor determined by the 
CPU[3:0] inputs. For a 25MHz 386 or 486 host CPU, the 
BCLK frequency will be 8.33MHz. For a 33MHz 386 or 
486, the BCLK frequency will be 8.25MHz. 

CLKKB out Keyboard Clock. The EBC's Clock Generation unit pro-
vides an output clock for the keyboard controller. Its fre-
quency is derived by dividing the HCLKCPU input by a 
factor determined by the CPU[3:0] inputs. If the host 
CPU is a 25MHz 386, the CLKKB output frequency will 
be 10MHz. If the host CPU is a 25MHz 486, the CLKKB 
output frequency will be 8.33MHz. If the host CPU is a 
33MHz 386 or 486, the CLKKB output frequency will be 
11MHz. 

BCLKIN in Bus Clock input. Allows the EBC to monitor the BCLK 
signal. 

I/O Recovery 

The ISA bus's default ready timer built into the EBC automatically forces ac-
cesses to 8 or 16-bit ISA I/O devices to append one wait state to the bus cycle. 
If a delay of longer than one wait state is desired, the signal LIOWAIT#, Long 
I/O Wait, may be asserted to provide a maximum of eleven wait states when 
accessing 8-bit ISA I/O slaves or three wait states when accessing 16-bit ISA 
I/O slaves. 

Testing 

Normally pulled high with an external pullup resistor, an active level on the 
TEST1# input causes the EBC to float all of its outputs except BCLK. This al-
lows a board tester to gain control of all of the output signal lines for testing 
purposes. 
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ISP interface unit 

The ISP interface unit provides the interconnect between the EBC and the ISP 
chip. For a description of the signals involved, refer to the next section. 

82357 Integrated System Peripheral (ISP) 

Introduction 

The majority of the logic contained within the Integrated System Peripheral, or 
ISP, was described in detail earlier in this publication and in the MindShare 
book entitled ISA System Architecture. The information presented here is in-
tended as a summary of the functions present in the ISP. Where applicable, 
signals indigenous to the ISP are described. Figure 12-6 provides a detailed 
view of the major logic blocks contained within the ISP. 
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Figure 12-6. The ISP Block Diagram 
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NMI Logic 

In an EISA system, there are four possible hardware causes for generation of 
NMI to the host CPU: 
 
• A Channel Check, or CHCHK#, from an ISA or EISA card reporting a 

catastrophic failure. 
• A system board RAM parity error (PARITY#). 
• A Watchdog Timer timeout because an applications program has disable 

interrupt recognition for an extended period of time. 
• A bus Timeout from the Central Arbitration Control because the current 

bus master has refused to yield the buses within the allowed period of time 
(8 microseconds for an EISA bus master or 2.5 microseconds for a DMA 
channel). 

 
The programmer may also force the NMI logic to generate an NMI by writing 
to I/O port 0462h with any data. 

Interrupt Controllers 

The ISP contains two modified Intel 8259A Programmable Interrupt Control-
lers in a master/slave configuration. Together, they provide a total of fifteen in-
terrupt request lines. Eleven of these are attached to the EISA/ISA card slots, 
while the remainder are reserved for special system board functions. The Inter-
rupt Acknowledge input to the ISP is conspicuous by its absence. When a bus 
master other than the DMAC or the Refresh logic is bus master, the ST2 signal 
line is an input to the ISP and it performs the interrupt acknowledge function. 
Whenever the EBC detects an interrupt acknowledge bus cycle on the host bus, 
it sets ST2 low to signal interrupt acknowledge to the interrupt controllers in 
the ISP. 
 
Two new registers have been added to allow individual programming of each 
interrupt request input as level-sensitive or edge-triggered. They are referred to 
as the ELCR, or Edge/Level Control registers. The master interrupt controller's 
ELCR resides at I/O port 04D0h, while the slave's resides at I/O port 04D1h. 
Bit zero in the master's ELCR corresponds to the IRQ0 input, while bit seven 
corresponds to the IRQ7 input. Bit zero in the slave's ELCR corresponds to the 
IRQ8 input, while bit seven corresponds to the IRQ15 input. A zero in a bit po-
sition sets up the respective IRQ  input to recognize positive, edge-triggered in-
terrupt requests (non-shareable). A one in a bit position sets the IRQ input up 
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to recognize active low, level-sensitive interrupt requests (shareable). In both 
ELCR registers, bit 0 must be a zero. 

DMA Controllers 

The ISP contains two enhanced Intel 8237 DMA Controllers in a master slave 
configuration. Together, they provide a total of seven DMA channels. DMA 
channels five through seven may be used by 16-bit I/O devices, while channels 
zero through three are reserved for 8-bit I/O devices. Each of the DMA chan-
nels can be programmed to utilize the following EISA-specific features: 
 
• 8, 16 or 32-bit transfers. 
• ISA compatible, Type “A,” Type “B” or Type “C” bus cycles.. 
• buffer chaining. 
• ring buffer. 
 
Detailed information on programming the DMA controllers can be found in the 
Intel 82350DT EISA Chipset manual. 
 
When a DMA channel becomes bus master, the ISP depends on the EBC to run 
the bus cycle for the DMA channel. The EBC generates START#, CMD#, IORC# 
and IOWC#. When a DMA channel becomes bus master, the type of bus cycle 
to run is indicated by the ISP's ST[3:0] outputs. Table 12-11 defines the ST[3:0] 
output settings for the different types of DMA bus cycle types. 
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Table 12-11. Type of DMA Bus Cycle In Progress 
ST3 ST2 ST1 ST0 DMA Bus Cycle Type 

0 0 0 0 8-bit ISA compatible 
0 0 0 1 8-bit Type “A” 
0 0 1 0 8-bit Type “B” 
0 0 1 1 8-bit Type “C” 
0 1 0 0 16-bit ISA compatible 
0 1 0 1 16-bit Type “A” 
0 1 1 0 16-bit Type “B” 
0 1 1 1 16-bit Type “C” 
1 0 0 0 32-bit ISA compatible 
1 0 0 1 32-bit Type “A” 
1 0 1 0 32-bit Type “B” 
1 0 1 1 32-bit Type “C” 
1 1 x x DMA controller Idle 

System Timers 

The ISP contains five programmable system timers necessary to the proper op-
eration of any EISA machine. All of these timers derive their timing from the 
ISP's OSC input signal of 1.19318MHz. 
 
• The System Timer is programmed during the POST to output a pulse onto 

IRQ0 once every 55ms. 
• The Refresh Timer is programmed during the POST to output a Refresh 

Request to the Central Arbitration Control once every 15.09 microseconds. 
• The Audio Timer is programmed by an applications program to yield the 

desired output frequency on the SPKR output to the speaker driver on the 
system board. 

• The Watchdog Timer may be utilized by multitasking operating systems to 
detect a cessation of interrupt servicing. The Watchdog Timer counts un-
serviced IRQ0 output pulses from the System Timer. When its initial count 
is exhausted, the Watchdog Timer generates a Watchdog Timeout to the 
NMI logic, causing it to generate NMI to the host CPU. 

• The Slowdown Timer allows the programmer to make the host CPU ap-
pear to run slower to facilitate the proper operation of game software and 
some copy protection schemes. The Slowdown Timer and all of the other 
timers are described in the MindShare book entitled ISA System Architec-
ture. 
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Central Arbitration Control 

The ISP incorporates the Central Arbitration Control, or CAC. The operation of 
the CAC is described earlier in this publication. In the event of a Bus Timeout 
(when a bus master refuses to yield control of the buses within a time limit), an 
NMI is generated to the host CPU. In order to force the errant bus master off 
the bus, the CAC sets the ISP's RSTDRV output active to reset the bus master. 
The buses are then granted to the host CPU so it can service the NMI. In the 
NMI interrupt service routine, the programmer may read the contents of the 
Bus Master Status Latch at I/O port 0464h to determine the identity of the 
faulty bus master card. Bits zero through five in this register indicate which 
EISA bus master card was last granted the buses. Bit zero corresponds to the 
bus master in EISA card slot one, while bit five corresponds to the bus master 
in EISA card slot six. Bits six and seven in this register aren't used. 

Refresh Logic 

The Refresh Logic is contained in the ISP. It arbitrates for the buses once every 
15.09 microseconds when the Refresh Timer sets the internal signal Refresh Re-
quest active. The CAC uses an internal Refresh Grant line to grant the buses to 
the Refresh Logic. At that time, the Refresh logic sets the ISP's REFRESH# out-
put active. The Refresh logic drives the row address onto the host address bus, 
HA[31:2]. 

Miscellaneous Interface Signals 

Table 12-12 defines ISP signals not defined elsewhere. 
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Table 12-12. Miscellaneous ISP Signals 
Signal Direction Description 

CPUMISS# in Generated by the host CPU logic, it indicates that the 
host CPU or its related cache controller requires the use 
of the buses to run a bus cycle. This is an input to the 
Central Arbitration Control. 

EXMASTER# out EISA Master. Generated by the Central Arbitration 
Control when the buses are granted to an EISA bus 
master. This output is connected to the EBC so it will 
know whether an EISA bus master is performing a bus 
cycle. 

EMSTR16# out Early 16-bit Bus Master. Set active by the Central Arbi-
tration Control if the buses are granted to a 16-bit ISA 
bus master. This output is connected to the EBC so it 
will know whether an ISA bus master is performing a 
bus cycle. 

DHOLD out Hold Request. When the Central Arbitration Control is 
going to grant the buses to a device other than the host 
CPU, it must first force the host CPU to relinquish con-
trol of the buses. The ISP sets its DHOLD output active 
to the EBC. The EBC, in turn, sets HHOLD (Host Hold 
Request) active. HHOLD is connected to either the host 
CPU's (in a cacheless system) or the host cache control-
ler's HOLD line. This forces the host off the bus. In re-
sponse, the host sets HHLDA, Host Hold Acknowl-
edge, active to the EBC. The EBC, in turn, sets its 
DHLDA output active to the ISP to inform the CAC 
that the host is off the bus. 

DHLDA in Hold Acknowledge. See DHOLD description. 
GT16M# out Greater Than 16MB. Generated by the DMA logic in 

the ISP if the active DMA channel is driving a memory 
address greater than 16MB (address greater than 
00FFFFFFh) onto the host address bus, HA[31:2]. 
GT16M# is sent to the EBC's ISA interface unit, where it 
determines whether the MRDC# or the MWTC# will be 
set active during the DMA bus cycle. See description of 
HGT16M# in table 12-6. 



EISA System Architecture 

190 

Signal Direction Description 

EOP/TC in/out End-of-Process or Transfer Complete. Generated by 
the DMA controller at the end of a DMA transfer when 
the transfer count has been exhausted. The TC signal is 
connected to all EISA/ISA slots. When TC is detected 
by the I/O device associated with the DMA channel, 
the I/O device will respond by setting its respective 
IRQ line active to signal the end of the transfer. EISA 
I/O cards may also generate TC to the DMA controller 
to prematurely terminate a transfer (e.g., in the case of 
an error). TC also is used to inform Bus Masters when 
to reprogram the  DMA address buffer when buffer 
chaining is used. This only pertains to bus masters that 
program the DMA channel for buffer chaining. 

AEN# out Address Enable. Generated by the DMA controller 
whenever a DMA channel is bus master and is driving 
a memory address onto the host address bus, HA[31:2]. 
For more information, refer to the chapter entitled 
“EISA Automatic Configuration.” 

DRDY in/out When an ISA bus master is accessing one of the regis-
ters within the ISP, this acts as the ready line and is 
connected externally to the CHRDY signal. When a 
DMA channel is bus master, DRDY acts as the ready 
input from the I/O slave associated with the active 
DMA channel. This permits the I/O slave to lengthen a 
bus cycle until it is ready to complete it. 

CSOUT# out Chip-Select Out. Whenever any bus master accesses 
any of the ISP's internal registers, the signal CSOUT# is 
set active. It should act as an enable for an external data 
bus buffer between the ISP and data EBB. The direction 
of the buffer is dictated by whether a read or a write 
transaction is in progress. 

RTCALE out Real-Time Clock Address Latch Enable. Any write to 
the Real-Time Clock chip's address port at I/O address 
0070h will cause RTCALE to be set active. This signal 
informs the RTC chip that a CMOS RAM address is 
present on the data bus and should be latched. 

Table 12 - 12, cont. 
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GT1M# out Greater Than 1MB. The ISP contains a memory ad-
dress decoder designed to recognize any memory ad-
dress less than 1MB (in the 00000000h through 
000FFFFFh range). GT1M# is set active whenever the 
memory address is greater than 000FFFFFh. The state 
of this signal is used within the EBC's ISA interface unit 
to determine whether or not to set the SMRDC# or 
SMWTC# signal active. If the address is below 1MB, 
SMRDC# or SMWTC# should be set active. 

Table 12 - 12, cont. 
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32-bit EISA bus master EISA-based systems support 32-bit EISA bus master cards. A 

bus master card typically includes an on-board processor and 
local memory. It can relieve the burden on the main processor 
by performing sophisticated memory access functions, such as 
scatter/gather block data transfers.  

82350DT EISA chip set The Intel 82350DT EISA chip set. The primary chips used by 
most manufacturers includes the 82358DT EISA Bus Control-
ler, or EBC, the 82357 Integrated Systems Peripheral, or ISP, 
and the 82352 EISA Bus Buffers, or EBBs 

82352 EISA Bus Buffer Part of the Intel 82350 EISA chip set used for two separate 
functions: one for the address latching and buffering and one 
for the data buffering and steering. 

82357 ISP This chip is part of the Intel 82350 chip set and contains a vari-
ety of functions including: the DMA controllers, Interrupt con-
trollers, Timers, Arbitration logic, and NMI logic.   

8237 DMACs The Intel DMA controllers used in ISA systems. 

AEN The signal used in ISA systems to disable all I/O address de-
coders so they do not respond to a DMA address. Also used in 
EISA systems to independently enable I/O address decoders 

AEN logic Logic responsible for controlling the AEN signal so that DMA 
cycles, standard access to ISA expansion devices and slot spe-
cific I/O addressing occur properly.  

Address translation The process of converting one type of address to another. For 
example: translating the address from an ISA Bus Master 
(SA0:SA16, LA17:LA23 and BHE#) to a 32-bit address 
(LA2:LA31 and BE0:BE3) required by 32-bit EISA devices.  

Arbitration Efficient bus sharing among the main CPU, multiple EISA bus 
master cards and DMA channels according to a priority 
scheme. 

Arbitration scheme EISA uses a three-way rotational priority scheme between the 
Refresh Logic, CPU and Bus Masters (shared), and DMA 
Channels. 
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BALE An ISA bus signal that is a buffered version of ALE. This signal 
is used by expansion devices to notify them that a valid ad-
dress is on the ISA bus. 

BCLK An ISA bus signal (bus clock) that provides the timing refer-
ence for all bus transactions. 

BCPR Services The legal firm that manages the EISA specification. 

Bridge The EISA chip set must allow the addresses and data gener-
ated by a bus master to propagate onto all of the system buses 
so all of the devices in the system can be communicated with. 
The connection between buses is termed a bridge. 

Buffer chaining A DMA function that permits the implementation of scatter 
write and gather read operations. A scatter write operation is 
one in which a contiguous block of data is read from an I/O 
device and is written to two or more areas of memory, or buff-
ers. A gather read operation reads a stream of data from sev-
eral blocks of memory, or buffers, and writes it to an I/O de-
vice. 

Burst bus cycle A burst transfer is used to transfer blocks of data between the 
current bus master (or DMA device) and EISA memory. After 
the initial transfer in a block data transfer, each subsequent 
EISA Burst bus transfer can be completed in one BCLK period 

Burst DMA A DMA bus cycle that supports burst. 

Bus Arbitration A process that determines how bus sharing among the main 
CPU, multiple EISA bus master cards and DMA channels is 
handled. 

Bus Arbitration Scheme. See arbitration scheme 

Bus Arbitration Signals. The signals available on the EISA bus that are used by bus 
masters to gain ownership of the buses. A pair of signals, 
MASTER REQUEST and a MASTER ACKNOWLEDGE exist 
for each bus master. 
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Bus Cycle Definition Specifies the type of bus cycle being run. Memory read, mem-
ory write, I/O read, I/O write, Interrupt acknowledge, Halt or 
Shutdown. 

Bus cycle, EISA std. Standard EISA bus cycle. A bus cycle based on a default a zero 
wait-state operation over the EISA bus. 

Bus master priority The priority a bus master has in the rotational scheme. The 
priority changes as bus masters gain control of the buses. 

Bus timeout Upon being preempted by removal of its Acknowledge, the 
current bus master must relinquish control of the buses within 
a prescribed period of time. Failure to do so results in a bus 
timeout. 

Cache controller A cache memory controller maintains copies of frequently ac-
cessed information read from DRAM memory in the cache. 

Central Arbitration Control. The logic responsible for managing the bus arbitration 
process. 

  

Command translation The process of translating between EISA and ISA type com-
mands. 

CMD# CMD# is an EISA signal that is set active by the system board 
coincidentally with the trailing edge of START#. Only the sys-
tem board drives the CMD# line. CMD# then remains active 
until the end of the bus cycle. 

Configuration file A file for each expansion card that describes the programmable 
options available on the card. Used in the EISA automatic con-
figuration process. 

Configuration Process A process that uses information provided by EISA expansion 
board manufactures and the system manufacturer to configure 
the system for conflict free operation. 

Data bus The group of signal lines used to transfer data between de-
vices. 
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Data Bus Steering A process used to ensure data travels over the correct paths 
between the current bus master and the currently addressed 
device. 

DMA burst bus cycles DMA bus cycles that supports burst. 

DMA cascade channel The DMA cascade channel connects (cascades) two DMA Con-
trollers together. DMA channel 4 is used as the cascade chan-
nel. 

DMA clock The clock used by the DMA Controller to control its data trans-
fer timing. DMA clock also called DCLK is typically one-half 
the speed of BCLK. 

DMA controller The devices used to perform the DMA transfers in an EISA 
system. Two modified 8237 DMA controllers are cascaded to-
gether to provide support for seven EISA DMA channels. 

DMA devices An I/O device that supports DMA transfers. 

DMA Extended Write  A option associated with DMA bus cycle timing that extends 
the amount of time that the read command line is active. 

DMA Page Register Each DMA channel has an external Page Register used to pro-
vide additional address capability. The DMA Controller 
natively only has the ability to handle 64KB of memory loca-
tions. 

DMA, Type A bus cycle. DMA bus cycle type that transfers data at a rate of every six 
BCLK periods. 

DMA, Type B bus cycle. DMA bus cycle type that transfers data at a rate of every four 
BCLK periods. 

DMA, Type C bus cycle. See burst bus cycle. 

Downshift burst A burst bus cycle performed by a 32-bit EISA bus master when 
communicating to a 16-bit EISA slave that supports burst. 

EBB See EISA bus buffer 

EBC See EISA bus controller  
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EISA bus buffer Two EISA bus buffers (EBBs) are typically used in EISA sys-
tems: the Data EBB and the Address EBB. 

 The Data EBB controls the data transceivers when routing data 
between the host and EISA buses and performs data bus steer-
ing when necessary, utilizing latches and data bus transceivers. 

 The Address EBB ensures that the address generated by the 
current bus master is seen by every host, EISA and ISA slave in 
the system. 

EISA bus controller Together with the Data and Address EBBs, the EBC provides 
the bridging, translation and data bus steering functions 

Edge/level  
control register Allows each interrupt request input to the interrupt controller 

to be programmed to recognize either edge trigger for ISA de-
vices or level triggering for sharable EISA devices. 

ELCR See Edge/Level Control Register. 

EX16# EISA size 16 signal that specifies that a 16-bit EISA device is 
being addressed. 

EX32# EISA size 32 signal that specifies that a 32-bit EISA device is 
being addressed. 

EXRDY Used by EISA devices to stretch the default timing beyond 
zero wait-states if the device's access time exceeds the default 
ready timing. 

HLDA  See Hold Acknowledge 

HOLD  See Hold Request 

Hold Acknowledge Hold acknowledge. A microprocessor output that notifies the 
request device that the microprocessor has given up ownership 
of the buses. 

Hold Request Hold request. A microprocessor input that is used by bus mas-
ters to gain ownership of the buses. 
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Host bus The bus on which the main CPU and main memory reside. 

Peripheral  A chip in the EISA chip set (ISP) that contains a variety of func-
tions including; the interrupt controllers, DMA controllers, ar-
bitration logic, timers, and NMI logic. 

Interrupt acknowledge A signal sent to the interrupt controller to indicate that its re-
quest is being acknowledged. 

Interrupt latency The time that expires between a device requesting service via 
an interrupt request and when the servicing finally occurs. 

Interrupts, phantom An erroneous interrupt triggered at the input of the interrupt 
controller, usually caused by a noise spike. 

Interrupts, shareable The ability of two devices to share a single interrupt request 
line (IRQ) and operate without conflict. 

LA bus Latchable Address bus. A portion of the ISA bus that connects 
to 16-bit devices. These address lines are valid earlier that the 
System Address lines (SA) and provide the ability of 16-bit de-
vices to operate at zero ISA wait-states. 

LOCK# signal Bus Lock. Prevents other bus masters from gaining control of 
the EISA bus when the current master asserts LOCK# when 
performing read/modify write operations. 

M/IO# Memory or I/O signal. Used by EISA devices to either specify 
or determine whether the address currently on the EISA bus is 
for a memory or I/O device. Also an output from 386 and 486 
microprocessors. 

MSBURST# Master Burst signal. Asserted by EISA masters to inform a 
bursting slave that a burst cycle will be run. 

NMI  Non-maskable Interrupt. Used to report serious error condi-
tions to the microprocessor. 

Preemption The ability of bus masters to request and gain ownership of the 
system buses from the current bus master. 
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Refresh The process of keeping dynamic memory from loosing infor-
mation from the bit cell due to capacitor discharge. All DRAM 
throughout the system is refreshed approximately every fifteen 
microseconds. 

Refresh logic The logic that runs refresh bus cycles. The refresh logic is a bus 
master capable of gaining ownership of the buses on a regular 
basis. 

Ring buffers A ring buffer reserves a fixed range of memory to be used for a 
DMA channel. Once the buffer has been filled, data can be 
stored at the beginning of the buffer again and old information 
can be over-written  if it has already been read by the micro-
processor. 

Rotating priority  A three-way rotational priority scheme between the Refresh 
Logic, CPU and Bus Masters (shared), and DMA Channels to 
determine which bus master will be next granted use of the 
buses. 

Slave A term used to refer to target devices with which bus masters 
communicate in an EISA system. 

SLBURST# Slave burst signal. Used by EISA bursting slaves when ad-
dressed to notify the current bus master that they support 
burst cycles. 

Slot-specific I/O The I/O addressing method used by EISA providing inde-
pendent address space on a slot-by-slot basis to support auto-
matic expansion board configuration. 

START# The EISA signal that goes active at the beginning of address 
time (T1) and inactive at the end of address time. Asserted by 
the current bus master.  

System timers The timers that are standard with all EISA systems and are 
contained in the ISP. These timers include the system timer (0), 
refresh timer, speaker timer, watchdog timer, and slowdown 
timer. 

Type A DMA bus cycle. See DMA, Type A 
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Type B DMA bus cycle. See DMA, Type B 

Type C DMA bus cycle. See DMA, Type C 

W/R# Write or read. Used by EISA devices to either specify or de-
termine whether the current EISA bus cycle is a write or read 
operation. Also an output from 386 and 486 microprocessors.  
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—0— 
0 Wait State ISA Bus Cycle Accessing 16-bit 

Device, 64 

—1— 
16-bit bus master, 178 
16-bit I/O ISA bus cycle, 61 
16-bit ISA devices, transfers with, 57 

—8— 
82350DT EISA chip set, 29 
8237 DMA controller, 132, 186 
8237 DMAC, 67 
8259 interrupt controller, 33 
8259A programmable interrupt controller, 

185 
8-bit ISA device, transfers with, 54 

—A— 
Address bus extension, EISA, 43 
Address bus, ISA, 43 
Address enable, 190 
Address enable signal, 96 
Address latch, 58, 61, 64, 122 
Address mode, 173 
Address pipelining, 59, 61, 64, 74, 77 
ADDRESS statement, 113 
Address time, 55, 61, 64, 140, 142, 146, 148, 

150, 151, 152, 153, 154, 155, 156, 158, 160, 
161, 162, 163, 164, 174, 177, 179, 180 

Address translation, 128 
ADS# signal, 129 
AEN decoder, 96 
AEN decoder action table, 97 
AEN logic, 96 
AEN signal, 50, 74 
AEN# signal, 190 
AMODE, 173 
Arbitration, 12 
Arbitration example, 29 
Arbitration signal group, EISA, 45 

Audio timer, 187 
AUTOEXEC.BAT, 104, 111 

—B— 
BALE, 177 
BALE signal, 50, 55, 58, 61, 64, 78, 129 
BCLK, 182 
BCLKIN, 182 
BIOS routine, 37 
BIOS routines, EISA configuration, 102 
Block mode transfer, 28 
BOARD statement, 110 
Bridge, 124 
Buffer chaining, EISA DMA, 89 
Burst bus cycle, EISA, 77 
Burst bus cycle, EISA DMA, 87 
Burst cycles, 10 
Burst handshake signals, 48 
Burst transfer, EISA, 77 
Burst transfer, performance using, 82 
Bus address latch enable, 177 
Bus arbitration, 23 
Bus arbitration signal group, EISA, 45 
Bus clock, 182 
Bus clock input, 182 
Bus control logic, 120, 122 
Bus cycle definition signal group, EISA, 48 
Bus cycle timing signal group, EISA, 49 
Bus cycle, EISA, 28 
Bus cycle, ISA, 28 
Bus cycle, ISA 16-bit device, 61 
Bus cycles, ISA, 53 
Bus master, 188 
Bus master cards, 11 
Bus master status latch, 188 
Bus master type determination criteria, 146 
Bus master, EISA, 28, 29 
Bus master, ISA, 30, 67 
Bus masters, EISA, 25 
Bus timeout, 185, 188 
Byte enable, 129, 140, 142, 143, 145, 147, 

148, 149, 150, 151, 152, 153, 154, 155, 156, 
157, 158, 159, 160, 161, 162, 163, 165, 166, 
167, 179 

Byte enable lines, 179 
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Byte enable signals, 43, 74, 78 
Byte enables, 74 

—C— 
CAC, 23, 28, 123, 188, 189 
Cache, 25, 113, 189 
Cache support, 180 
CATEGORY field, 110 
Category list, 114 
Central arbitration control, 23, 132, 162, 163, 

164, 175, 185, 187, 188, 189 
CFG file extension, 102 
Chaining mode, EISA DMA, 89 
Channel check, 185 
Channel ready, 178 
CHCHK# signal, 101, 185 
Chip-select out, 190 
CHOICE block, 112 
CHRDY, 140, 141, 143, 144, 147, 149, 157, 

159, 162, 163, 164, 165, 166, 178, 190 
CHRDY signal, 56, 59, 61 
CLKKB, 182 
Clock generator unit, 181 
CMD# signal, 49, 74, 76, 129, 140, 141, 142, 

143, 144, 146, 147, 148, 149, 150, 151, 152, 
153, 154, 155, 156, 157, 158, 159, 160, 161, 
163, 164, 176, 179, 186 

Command, 179 
Command signal, 49 
Command signal translation, 128 
Compressed bus cycle, EISA, 75 
Compressed mode, EISA DMA, 74 
Compressed timing, ISA DMA, 69 
CONFIG.SYS, 104, 111 
Configuration, 12 
Configuration bits, EISA, 101 
Configuration file macro language, EISA, 

104 
Configuration file naming, EISA, 102 
Configuration file, EISA, 101 
Configuration file, example EISA, 104 
Configuration procedure, EISA, 103 
Configuration process, EISA, 101 
Configuration registers, EISA, 100 
Connector pinouts, EISA, 50 

CPU, 25 
CPU selection, 135 
CPU type, 135 
CPUMISS# signal, 189 
CSOUT# signal, 190 
Current registers, EISA DMA, 89 

—D— 
D/C# signal, 129 
DAKn# signals, 87 
Data bus extension, EISA, 45 
Data bus steering, 134, 137, 140, 142, 144, 

146, 147, 148, 149, 150, 151, 152, 153, 154, 
155, 156, 157, 158, 160, 161, 164, 179, 180 

Data bus steering logic, 12, 74, 82 
Data bus transceivers, 120 
Data path steering, 129 
Data time, 55, 59, 61, 65, 140, 141, 142, 144, 

147, 148, 149, 150, 151, 152, 153, 156, 157, 
158, 160, 161, 162, 163, 176, 179, 180 

Default ready timer, 56, 59, 61, 62, 65 
Demand mode transfer, 28 
Device ROM, 112 
Device ROM scan, 37 
Device ROMs, 37 
DHLDA, 175, 189 
DHOLD, 175, 189 
DMA, 25, 28 
DMA bus cycle type, 187 
DMA bus cycle types, EISA, 83 
DMA bus cycle, EISA type A, 85 
DMA bus cycle, EISA type B, 86 
DMA bus cycle, EISA type C, 87 
DMA bus cycle, ISA-compatible, 84 
DMA Bus Cycles, ISA, 67 
DMA bus master, 171 
DMA cascade channel, 67 
DMA cascade input, 67 
DMA channel, 112 
DMA channel 0, 67 
DMA channel preemption, EISA, 89 
DMA channels, EISA, 83 
DMA clock, 67 
DMA clock speeds, 68 
DMA controller, 50, 74, 186, 190 
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DMA controller, EISA, 83 
DMA enhancements, 10 
DMA idle state, ISA, 68 
DMA memory address limit, ISA, 67 
DMA memory address register, 67 
DMA memory addressing, EISA, 88 
DMA transfer rate summary, EISA, 88 
DMAC, 25 
DMAC bus cycle, 68 
Downshift burst bus master, 82 
DRDY, 190 

—E— 
Early 16-bit bus master, 189 
EBB, 133, 134, 137, 138, 139, 140, 141, 142, 

143, 144, 145, 146, 147, 148, 149, 150, 151, 
152, 154, 155, 156, 157, 158, 161, 162, 163, 
164, 165, 166, 167, 168, 169, 170, 171, 172, 
175, 176, 190 

EBC, 78, 133, 134, 135, 136, 137, 138, 140, 
141, 142, 143, 144, 145, 146, 147, 148, 149, 
150, 151, 152, 153, 154, 155, 156, 157, 158, 
159, 160, 161, 162, 163, 164, 165, 166, 167, 
168, 169, 171, 172, 173, 175, 176, 177, 178, 
179, 180, 181, 182, 183, 185, 186, 189, 191 

Edge/level control register, 36, 185 
Edge-triggered interrupt requests, 185 
EISA burst bus cycle, 77 
EISA burst transfer, 77 
EISA bus, 117, 119 
EISA bus buffers, 133, 134 
EISA bus controller, 78, 133, 134 
EISA bus interface unit, 179 
EISA bus master, 170, 188 
EISA bus master bus cycles, 71 
EISA chip set, 124, 133 
EISA compressed bus cycle, performance 

using, 76 
EISA connector, 41 
EISA master, 189 
EISA ready signal, 49 
EISA ready., 180 
EISA signal groups, 42 
EISA signals, 41 
EISA size 16, 180 

EISA size 32, 180 
EISA slave size 16 signal, 50 
EISA slave size 32 signal, 50 
EISA standard bus cycle, performance 

using, 75 
ELCR bit assignment, master 8259, 36 
ELCR bit assignment, slave 8259, 37 
ELCR register, 36, 185 
Embedded device, 94, 98 
EMSTR16# signal, 146, 162, 163, 164, 189 
ENABLE bit, EISA configuration, 101 
ENDGROUP statement, 111 
End-of-process or transfer complete, 190 
EOP/TC, 190 
EX16# signal, 50, 74, 77, 78, 82, 129, 140, 

141, 142, 144, 146, 147, 148, 149, 150, 151, 
152, 153, 154, 156, 158, 159, 160, 161, 162, 
163, 164, 165, 167, 178, 180 

EX32# signal, 50, 74, 77, 78, 129, 140, 141, 
142, 144, 146, 147, 148, 149, 150, 151, 152, 
153, 154, 155, 156, 158, 160, 161, 162, 163, 
164, 165, 168, 178, 180 

EXMASTER# signal, 146, 155, 189 
Expanded memory, 113 
EXRDY, 150, 151, 152, 153, 154, 155, 156, 

160, 161, 164, 167, 168, 176, 180 
EXRDY signal, 49, 74, 76, 79 
Extended write, ISA DMA, 70 

—F— 
Features, EISA, 9, 14 
File extension, EISA configuration, 102 
FREE statement, 112 
FUNCTION statement, 112 

—G— 
Gather operation, 89 
Greater than 16MB, 189 
Greater than 1MB, 191 
GROUP statement, 111 
GT16M# signal, 189 
GT1M# signal, 177, 178, 191 
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—H— 
HADS0# signal, 165, 166, 167, 174 
HADS1# signal, 165, 166, 167, 174 
HALAOE# signal, 169, 170, 171 
HALE# signal, 169, 170, 171 
HCLKCPU, 182 
HD/C# signal, 165, 166, 167, 168, 174 
HDOE0, 138 
HDOE1# signal, 138 
HDSDLE1# signal, 138, 156, 165, 166, 167, 

168 
HERDYO# signal, 174, 180 
HGT16M# signal, 175, 189 
HHLDA, 146, 155, 165, 166, 167, 175, 189 
HHOLD, 175, 189 
HKEN# signal, 176 
HLDA signal, 68 
HLOCIO# signal, 155, 162, 163, 164, 165, 

172, 175, 178, 180 
HLOCK# signal, 174, 179 
HLOCMEM# signal, 155, 162, 163, 164, 165, 

172, 175, 180 
HM/IO# signal, 165, 166, 167, 168, 170, 171, 

174 
HNA# signal, 173, 174 
Hold acknowledge, 189 
Hold acknowledge signal, 68 
Hold request, 189 
Hold request signal, 68 
HOLD signal, 68 
Hold time, 56, 59, 75 
Host address status 0 and 1, 174 
Host bus, 117, 118 
Host bus interface unit, 172 
Host bus stretch signal, 176 
Host byte enables, 173 
Host cache enable, 176 
Host CPU bus master, 170 
Host CPU clock, 182 
Host data or control, 174 
Host early ready output, 174 
Host greater than 16MB, 175 
Host hold acknowledge, 175 
Host hold request, 175 
Host local I/O, 175 

Host local memory, 175 
Host lock, 174 
Host memory or I/O, 174 
Host next address, 174 
Host ready input, 174 
Host ready output, 174 
Host write or read, 174 
HRDYI# signal, 174 
HRDYO# signal, 166, 167, 168, 174, 176, 180 
HSSTRB# signal, 180 
HSTRETCH# signal, 176 
HW/R# signal, 165, 166, 167, 168, 174 

—I— 
I/O address assignment, EISA, 95 
I/O address decode, 50 
I/O address decode, inadequate, 91 
I/O address ranges, unusable, 94 
I/O address space, EISA slot-specific, 94 
I/O read command, 177 
I/O recovery, 182 
I/O write command, 177 
I/O write recovery time, 61 
ID statement, 110 
INITVAL statement, 110 
In-service register, 34 
Integrated system peripheral, 183 
Integrated systems peripheral, 132, 133 
Intel 82350DT EISA chip set, 29 
Intel 8237 DMA controller, 132 
Intel 8237 DMAC, 67 
Interrupt acknowledge, 185 
Interrupt acknowledge bus cycle, 34 
Interrupt chaining, 38 
Interrupt controller, 33, 132, 185 
Interrupt handling, 12, 33 
Interrupt handling, EISA, 35 
Interrupt handling, ISA, 34 
Interrupt latency, 40 
Interrupt pending bit, 39 
Interrupt request, 112, 185 
Interrupt request, level-sensitive, 37 
Interrupt return, 35 
Interrupt service routine, 37, 188 
Interrupt service routine, linked list, 38 
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Interrupt table, 37 
Interrupt vector, 34 
Interrupt, ghost, 34, 40 
Interrupt, non-shareable, 35 
Interrupt, phantom, 40 
Interrupt, shareable, 35 
IO size 16, 178 
IO16# signal, 61, 74, 129, 140, 142, 146, 148, 

150, 152, 153, 154, 158, 162, 163, 164, 165, 
166, 178 

IOCHKERR bit, EISA configuration, 101 
IOCHKRST bit, EISA configuration, 101 
IOPORT() statement, 110 
IORC# signal, 50, 55, 61, 87, 129, 140, 141, 

147, 157, 159, 177, 186 
IOWC# signal, 50, 55, 61, 87, 129, 141, 143, 

149, 157, 159, 162, 163, 164, 166, 177, 186 
IRET instruction, 35 
IRQ lines, number of, 35 
IRQ0, 185, 187 
IRQ13 signal, 89 
IRQ15, 34, 185 
IRQ7, 34, 185 
IRQ8, 185 
IRR bit, 34 
ISA bus, 119 
ISA bus cycles, 53 
ISA bus interface unit, 176 
ISA bus master, 170 
ISA I/O address space problem, 91 
ISA slave, 16-bit, 54 
ISA slave, 8-bit, 53 
ISP, 132, 133, 134, 162, 163, 164, 171, 175, 

177, 178, 183, 184, 185, 186, 187, 188, 189, 
190, 191 

ISR, 34 

—K— 
Keyboard clock, 182 

—L— 
LA bus, 43, 55, 58, 59, 61, 64, 74, 122 
LAHAOE# signal, 169, 170, 171 
LALE# signal, 169, 170, 171 

LASAOE# signal, 169, 170, 171, 172 
LENGTH statement, 110 
Level-sensitive interrupt requests, 186 
LIM page frame, 113 
LINK group, 112 
Local bus, 117 
Lock signal, 49 
LOCK# signal, 174, 179 
Lock, bus, 49 

—M— 
M/IO# signal, 48, 74, 77, 96, 129, 140, 142, 

143, 145, 147, 148, 149, 150, 151, 152, 153, 
154, 155, 156, 157, 158, 159, 160, 161, 164, 
168, 170, 171, 179 

M16# signal, 55, 58, 64, 129, 140, 142, 146, 
148, 150, 152, 153, 154, 158, 162, 163, 164, 
165, 166, 178 

MAK signal, 29 
MAKx# signal, 46 
Manufacturer's code, 99, 110 
Master acknowledge signal, 46 
Master burst, 180 
Master burst signal, 48 
Master request signal, 46 
MASTER16# signal, 146, 155, 156, 158, 160, 

161, 162, 163, 164, 178 
Memory capacity, 10 
Memory or I/O, 179 
Memory or I/O signal, 48 
Memory read command, 177 
Memory size 16, 178 
MEMORY statement, 113 
Memory write command, 177 
Memory-mapped I/O, 113 
MEMTYPE field, 113 
MRDC# signal, 58, 64, 85, 129, 140, 147, 157, 

159, 175, 177, 189 
MREQ signal, 29 
MREQn#, 28 
MREQx# signal, 46 
MSBURST# signal, 48, 78, 79, 87, 146, 180 
MWTC# signal, 58, 59, 64, 85, 86, 129, 143, 

149, 157, 159, 162, 163, 164, 166, 175, 177, 
189 
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—N— 
NAME field, 110 
NMI, 25, 28, 132, 185, 187, 188 
No wait states, 178 
Non-volatile memory, EISA, 102 
NOWS# signal, 56, 59, 65, 74, 76, 140, 141, 

143, 144, 147, 149, 157, 159, 162, 163, 164, 
165, 166, 178 

—O— 
OSC input signal, 187 

—P— 
Page mode RAM, 45 
Page register, 67 
PARITY# signal, 185 
Pipelining, address, 59, 61, 64 
POST, 37, 103, 187 
Posted write enable, 176 
Preemption, 28 
Priority, 25 
Priority, DMA controller, 25 
Priority, rotational, 25 
Product identifier, 99 
Product identifier, EISA, 98 
Product revision, 99 
PWEN# signal, 176 

—Q— 
QHSSTRB# signal, 180 

—R— 
RAM parity error, 185 
RDE# signal, 180 
READID statement, 110 
READY#, 129 
READY# timing, default, 54 
Real-time clock address latch enable, 190 
Recovery time, IO write, 61 
Refresh bus master, 171 
Refresh counter, 31 

Refresh grant, 188 
Refresh logic, 25, 28, 30, 132, 171, 178, 185, 

188 
Refresh request, 188 
Refresh timer, 187, 188 
REFRESH# signal, 146, 178, 188 
Reset 385 cache controller, 181 
Reset control, 181 
Reset host CPU, 181 
Restart, 181 
Ring buffer, EISA DMA, 90 
ROM memory, 113 
RST, 181 
RST385, 181 
RSTAR# signal, 181 
RSTCPU, 181 
RSTDRV, 188 
RTCALE, 190 

—S— 
S1 state, ISA DMA, 68 
S2 state, ISA DMA, 68 
S3 state, ISA DMA, 68, 69 
S4 state, ISA DMA, 68 
SA0, 140, 141, 143, 144, 147, 149, 157, 159, 

162, 163, 164, 165, 166, 173, 177, 179 
SA1, 140, 141, 143, 144, 147, 149, 157, 159, 

162, 163, 164, 165, 166, 173, 177, 179 
SALAOE# signal, 169, 170 
SALE# signal, 169, 170, 171 
SBHE# signal, 140, 141, 143, 144, 147, 149, 

157, 159, 162, 163, 164, 165, 166, 173, 179 
Scan, device ROM, 37 
Scatter operation, 89 
SCRAM memory, 45 
SDCPYEN01# signal, 137, 138, 141, 143, 

157, 165 
SDCPYEN02# signal, 137, 141, 143, 147, 

149, 151, 152, 153, 161, 164, 166, 167 
SDCPYEN03# signal, 137, 141, 144 
SDCPYEN13# signal, 138, 147, 149, 151, 

152, 161, 164, 166, 167 
SDCPYUP, 137, 138, 141, 143, 144, 147, 149, 

151, 152, 157, 161, 164, 165, 166, 167 
SDHDLE0# signal, 138, 140, 147, 151, 156 
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SDHDLE1# signal, 138, 141, 147, 151, 156 
SDHDLE2# signal, 138, 141, 147, 151 
SDHDLE3# signal, 138, 141, 147, 151 
SDHDLEx# outputs, 148 
SDOE0# signal, 138, 141, 143, 147, 149, 151, 

152, 156, 157, 168 
SDOE1# signal, 138, 141, 143, 147, 149, 151, 

152, 156, 157, 158, 165, 168 
SDOE2# signal, 138, 141, 143, 144, 147, 149, 

151, 152, 153, 165, 166, 167, 168 
SHARE statement, 112 
Si state, ISA DMA, 68 
SIZE statement, 112 
Slave burst, 180 
Slave burst signal, 48, 78 
Slave size signal group, EISA, 50 
SLBURST# signal, 48, 78, 82, 87, 180 
SLOT statement, 110 
Slot-specific I/O support, 181 
Slowdown timer, 187 
SMRDC# signal, 55, 129, 140, 141, 147, 157, 

159, 177, 178, 191 
SMWTC# signal, 55, 129, 141, 143, 149, 157, 

159, 162, 163, 164, 177, 178, 191 
SO state, ISA DMA, 68 
SOFTWARE() statement, 111 
SPWROK, 173, 181 
ST2, 185 
Standard EISA bus cycle, 72 
Standard memory read command, 177 
Standard memory write command, 178 
START# signa, 77 
START# signal, 49, 74, 129, 140, 141, 142, 

143, 144, 146, 147, 148, 149, 150, 151, 152, 
153, 154, 155, 156, 157, 158, 160, 161, 163, 
164, 179, 186 

State table, ISA DMA, 69 
Stop register, EISA DMA, 90 
SUBTYPE statement, 111 
Sw state, ISA DMA, 68 

System power OK, 181 
System reset, 181 
System timers, 187 

—T— 
TC signal, 89 
Tc time, 55, 59, 61, 74, 77, 78, 79 
Testing, 182 
Timers, 132, 187 
TIMING statement, 112 
Transfer complete, 190 
Transfer complete signal, 90 
Transfer count register, 67 
Transfer speed, ISA DMA, 70 
Ts time, 55, 74, 76, 77, 78, 80 
TYPE statement, 111 

—W— 
W/R# signal, 48, 74, 77, 78, 80, 85, 86, 129, 

140, 142, 143, 145, 147, 148, 149, 150, 151, 
152, 153, 154, 155, 156, 157, 158, 159, 160, 
161, 164, 179 

Wait state, 58, 62, 77 
Wait state, DMA, 68 
Watchdog timeout, 187 
Watchdog timer, 185, 187 
Write bus cycle, 56, 61 
Write or read, 179 
Write or read signal, 48 

—X— 
X Bus, 119 
X data bus transceiver, 120 
XA bus, 122 
X-bus, 117 
XD bus, 120 
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